250 research outputs found

    Natural Host Genetic Resistance to Lentiviral CNS Disease: A Neuroprotective MHC Class I Allele in SIV-Infected Macaques

    Get PDF
    Human immunodeficiency virus (HIV) infection frequently causes neurologic disease even with anti-retroviral treatment. Although associations between MHC class I alleles and acquired immunodeficiency syndrome (AIDS) have been reported, the role MHC class I alleles play in restricting development of HIV-induced organ-specific diseases, including neurologic disease, has not been characterized. This study examined the relationship between expression of the MHC class I allele Mane-A*10 and development of lentiviral-induced central nervous system (CNS) disease using a well-characterized simian immunodeficiency (SIV)/pigtailed macaque model. The risk of developing CNS disease (SIV encephalitis) was 2.5 times higher for animals that did not express the MHC class I allele Mane-A*10 (P = 0.002; RR = 2.5). Animals expressing the Mane-A*10 allele had significantly lower amounts of activated macrophages, SIV RNA, and neuronal dysfunction in the CNS than Mane-A*10 negative animals (P<0.001). Mane-A*10 positive animals with the highest CNS viral burdens contained SIV gag escape mutants at the Mane-A*10-restricted KP9 epitope in the CNS whereas wild type KP9 sequences dominated in the brain of Mane-A*10 negative animals with comparable CNS viral burdens. These concordant findings demonstrate that particular MHC class I alleles play major neuroprotective roles in lentiviral-induced CNS disease

    Prognostic value of NT-proBNP levels in the acute phase of sepsis on lower long-term physical function and muscle strength in sepsis survivors

    Get PDF
    Background: Sepsis survivors often develop chronic critical illness (CCI) and demonstrate the persistent inflammation, immunosuppression, and catabolism syndrome predisposing them to long-term functional limitations and higher mortality. There is a need to identify biomarkers that can predict long-term worsening of physical function to be able to act early and prevent mobility loss. N-terminal pro-brain natriuretic peptide (NT-proBNP) is a well-accepted biomarker of cardiac overload, but it has also been shown to be associated with long-term physical function decline. We explored whether NT-proBNP blood levels in the acute phase of sepsis are associated with physical function and muscle strength impairment at 6 and 12 months after sepsis onset. Methods: This is a retrospective analysis conducted in 196 sepsis patients (aged 18-86 years old) as part of the University of Florida (UF) Sepsis and Critical Illness Research Center (SCIRC) who consented to participate in the 12-month follow-up study. NT-proBNP was measured at 24 h after sepsis onset. Patients were followed to determine physical function by short physical performance battery (SPPB) test score (scale 0 to12-higher score corresponds with better physical function) and upper limb muscle strength by hand grip strength test (kilograms) at 6 and 12 months. We used a multivariate linear regression model to test an association between NT-proBNP levels, SPPB, and hand grip strength scores. Missing follow-up data or absence due to death was accounted for by using inverse probability weighting based on concurrent health performance status scores. Statistical significance was set at p ≀ 0.05. Results: After adjusting for covariates (age, gender, race, Charlson comorbidity index, APACHE II score, and presence of CCI condition), higher levels of NT-proBNP at 24 h after sepsis onset were associated with lower SPPB scores at 12 months (p &lt; 0.05) and lower hand grip strength at 6-month (p &lt; 0.001) and 12-month follow-up (p &lt; 0.05). Conclusions: NT-proBNP levels during the acute phase of sepsis may be a useful indicator of higher risk of long-term impairments in physical function and muscle strength in sepsis survivors

    Gendered self-views across 62 countries: A test of competing models

    Get PDF
    Social role theory posits that binary gender gaps in agency and communion should be larger in less egalitarian countries, reflecting these countries’ more pronounced sex-based power divisions. Conversely, evolutionary and self-construal theorists suggest that gender gaps in agency and communion should be larger in more egalitarian countries, reflecting the greater autonomy support and flexible self-construction processes present in these countries. Using data from 62 countries (N = 28,640), we examine binary gender gaps in agentic and communal self-views as a function of country-level objective gender equality (the Global Gender Gap Index) and subjective distributions of social power (the Power Distance Index). Findings show that in more egalitarian countries, gender gaps in agency are smaller and gender gaps in communality are larger. These patterns are driven primarily by cross-country differences in men’s self-views and by the Power Distance Index (PDI) more robustly than the Global Gender Gap Index (GGGI). We consider possible causes and implications of these findings.info:eu-repo/semantics/acceptedVersio

    Trajectories and Predictors of the Development of Very Young Boys with Fragile X Syndrome

    Get PDF
    Objective To describe the development of young boys with fragile X syndrome (FXS). Methods Fifty-five boys (aged 8–48 months at study entry) with the full mutation FXS received multiple developmental assessments. Results As expected, the boys’ rate of development was significantly lower than chronological age expectations. No evidence of slowing in the rate of development was found. Autistic behavior was negatively associated with development, but maternal IQ was not. Developmental delays were evident in some domains as early as 9 months; however, initial detection of delays is complicated by measures and criteria used. Developmental age scores at 31 months of age were related to scores obtained at 61 months of age only in the global composite and visual reception domain. Conclusions Developmental delays are evident in some infants with FXS as young as 9 months of age. Pediatric psychologists need to be informed about the developmental profiles in young children with FXS to accurately diagnose, treat, and support these children and their families

    Timing of immune escape linked to success or failure of vaccination

    Get PDF
    Successful vaccination against HIV should limit viral replication sufficiently to prevent the emergence of viral immune escape mutations. Broadly directed immunity is likely to be required to limit opportunities for immune escape variants to flourish. We studied the emergence of an SIV Gag cytotoxic T cell immune escape variant in pigtail macaques expressing the Mane-A*10 MHC I allele using a quantitative RT-PCR to measure viral loads of escape and wild type variants. Animals receiving whole Gag expressing vaccines completely controlled an SIVmac251 challenge, had broader CTL responses and exhibited minimal CTL escape. In contrast, animals vaccinated with only a single CTL epitope and challenged with the same SIVmac251 stock had high levels of viral replication and rapid CTL escape. Unvaccinated na&iuml;ve animals exhibited a slower emergence of immune escape variants. Thus narrowly directed vaccination against a single epitope resulted in rapid immune escape and viral levels equivalent to that of na&iuml;ve unvaccinated animals. These results emphasize the importance of inducing broadly directed HIV-specific immunity that effectively quashes early viral replication and limits the generation of immune escape variants. This has important implications for the selection of HIV vaccines for expanded human trials.<br /

    Neuropathology of wild-type and nef-attenuated T cell tropic simian immunodeficiency virus (SIVmac32H) and macrophage tropic neurovirulent SIVmac17E-Fr in cynomolgus macaques

    Get PDF
    The neuropathology of simian immunodeficiency (SIV) infection in cynomolgus macaques (Macaca fascicularis) was investigated following infection with either T cell tropic SIVmacJ5, SIVmacC8 or macrophage tropic SIVmac17E-Fr. Formalin fixed, paraffin embedded brain tissue sections were analysed using a combination of in situ techniques. Macaques infected with either wild-type SIVmacJ5 or neurovirulent SIVmac17E-Fr showed evidence of neuronal dephosphorylation, loss of oligodendrocyte and CCR5 staining, lack of microglial MHC II expression, infiltration by CD4+ and CD8+ T cells and mild astrocytosis. SIVmacJ5-infected animals exhibited activation of microglia whilst those infected with SIVmac17E-Fr demonstrated a loss of microglia staining. These results are suggestive of impaired central nervous system (CNS) physiology. Furthermore, infiltration by T cells into the brain parenchyma indicated disruption of the blood brain barrier (BBB). Animals infected with the Δnef-attenuated SIVmacC8 showed microglial activation and astrogliosis indicative of an inflammatory response, lack of MHC II and CCR5 staining and infiltration by CD8+ T cells. These results demonstrate that the SIV infection of cynomolgus macaque can be used as a model to replicate the range of CNS pathologies observed following HIV infection of humans and to investigate the pathogenesis of HIV associated neuropathology

    Effect of human immunodeficiency virus on blood-brain barrier integrity and function: an update

    Get PDF
    The blood-brain barrier (BBB) is a diffusion barrier that has an important role in maintaining a precisely regulated microenvironment protecting the neural tissue from infectious agents and toxins in the circulating system. Compromised BBB integrity plays a major role in the pathogenesis of retroviral associated neurological diseases. Human Immunodeficiency Virus (HIV) infection in the Central Nervous System (CNS) is an early event even before the serodiagnosis for HIV positivity or the initiation of antiretroviral therapy (ART), resulting in neurological complications in many of the infected patients. Macrophages, microglia and astrocytes (in low levels) are the most productively/latently infected cell types within the CNS. In this brief review, we have discussed about the effect of HIV infection and viral proteins on the integrity and function of BBB, which may contribute to the progression of HIV associated neurocognitive disorders

    Amyloid and tau cerebrospinal fluid biomarkers in HIV infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Because of the emerging intersections of HIV infection and Alzheimer's disease, we examined cerebrospinal fluid (CSF) biomarkers related of amyloid and tau metabolism in HIV-infected patients.</p> <p>Methods</p> <p>In this cross-sectional study we measured soluble amyloid precursor proteins alpha and beta (sAPPα and sAPPÎČ), amyloid beta fragment 1-42 (AÎČ<sub>1-42</sub>), and total and hyperphosphorylated tau (t-tau and p-tau) in CSF of 86 HIV-infected (HIV+) subjects, including 21 with AIDS dementia complex (ADC), 25 with central nervous system (CNS) opportunistic infections and 40 without neurological symptoms and signs. We also measured these CSF biomarkers in 64 uninfected (HIV-) subjects, including 21 with Alzheimer's disease, and both younger and older controls without neurological disease.</p> <p>Results</p> <p>CSF sAPPα and sAPPÎČ concentrations were highly correlated and reduced in patients with ADC and opportunistic infections compared to the other groups. The opportunistic infection group but not the ADC patients had lower CSF AÎČ<sub>1-42 </sub>in comparison to the other HIV+ subjects. CSF t-tau levels were high in some ADC patients, but did not differ significantly from the HIV+ neuroasymptomatic group, while CSF p-tau was not increased in any of the HIV+ groups. Together, CSF amyloid and tau markers segregated the ADC patients from both HIV+ and HIV- neuroasymptomatics and from Alzheimer's disease patients, but not from those with opportunistic infections.</p> <p>Conclusions</p> <p>Parallel reductions of CSF sAPPα and sAPPÎČ in ADC and CNS opportunistic infections suggest an effect of CNS immune activation or inflammation on neuronal amyloid synthesis or processing. Elevation of CSF t-tau in some ADC and CNS infection patients without concomitant increase in p-tau indicates neural injury without preferential accumulation of hyperphosphorylated tau as found in Alzheimer's disease. These biomarker changes define pathogenetic pathways to brain injury in ADC that differ from those of Alzheimer's disease.</p
    • 

    corecore