44 research outputs found

    Novel Approaches to Inhibit HIV Entry

    Get PDF
    Human Immunodeficiency Virus (HIV) entry into target cells is a multi-step process involving binding of the viral glycoprotein, Env, to its receptor CD4 and a coreceptor—either CCR5 or CXCR4. Understanding the means by which HIV enters cells has led to the identification of genetic polymorphisms, such as the 32 base-pair deletion in the ccr5 gene (ccr5∆32) that confers resistance to infection in homozygous individuals, and has also resulted in the development of entry inhibitors—small molecule antagonists that block infection at the entry step. The recent demonstration of long-term control of HIV infection in a leukemic patient following a hematopoietic stem cell transplant using cells from a ccr5∆32 homozygous donor highlights the important role of the HIV entry in maintaining an established infection and has led to a number of attempts to treat HIV infection by genetically modifying the ccr5 gene. In this review, we describe the HIV entry process and provide an overview of the different classes of approved HIV entry inhibitors while highlighting novel genetic strategies aimed at blocking HIV infection at the level of entry

    DNA methylation changes associated with risk factors in tumors of the upper aerodigestive tract

    Get PDF
    Cancers of the upper aerodigestive tract (UADT) are common forms of malignancy associated with tobacco and alcohol exposures, although human papillomavirus and nutritional deficiency are also important risk factors. While somatically acquired DNA methylation changes have been associated with UADT cancers, what triggers these events and precise epigenetic targets are poorly understood. In this study, we applied quantitative profiling of DNA methylation states in a panel of cancer-associated genes to a case-control study of UADT cancers. Our analyses revealed a high frequency of aberrant hypermethylation of several genes, including MYOD1, CHRNA3 and MTHFR in UADT tumors, whereas CDKN2A was moderately hypermethylated. Among differentially methylated genes, we identified a new gene (the nicotinic acetycholine receptor gene) as target of aberrant hypermethylation in UADT cancers, suggesting that epigenetic deregulation of nicotinic acetycholine receptors in non-neuronal tissues may promote the development of UADT cancers. Importantly, we found that sex and age is strongly associated with the methylation states, whereas tobacco smoking and alcohol intake may also influence the methylation levels in specific genes. This study identifies aberrant DNA methylation patterns in UADT cancers and suggests a potential mechanism by which environmental factors may deregulate key cellular genes involved in tumor suppression and contribute to UADT cancers.IARCIARCla Ligue National (Francaise) Contre le Cancerla Ligue National (Francaise) Contre le CancerNational Institutes of Health/National Cancer Institute (NIH/NCI), United StatesNational Institutes of Health/National Cancer Institute (NIH/NCI), United StatesAssociation pour la Recherche sur le Cancer (ARC, France)l'Association pour la Recherche sur le Cancer (ARC), Francela Ligue Nationale (Francaise) Contre le Cancer (Comite SaoneetLoire), Francela Ligue Nationale (Francaise) Contre le Cancer (Comite Saone-et-Loire), FranceSwiss Bridge AwardSwiss Bridge Awar

    Engineering HIV-Resistant Human CD4+ T Cells with CXCR4-Specific Zinc-Finger Nucleases

    Get PDF
    HIV-1 entry requires the cell surface expression of CD4 and either the CCR5 or CXCR4 coreceptors on host cells. Individuals homozygous for the ccr5Δ32 polymorphism do not express CCR5 and are protected from infection by CCR5-tropic (R5) virus strains. As an approach to inactivating CCR5, we introduced CCR5-specific zinc-finger nucleases into human CD4+ T cells prior to adoptive transfer, but the need to protect cells from virus strains that use CXCR4 (X4) in place of or in addition to CCR5 (R5X4) remains. Here we describe engineering a pair of zinc finger nucleases that, when introduced into human T cells, efficiently disrupt cxcr4 by cleavage and error-prone non-homologous DNA end-joining. The resulting cells proliferated normally and were resistant to infection by X4-tropic HIV-1 strains. CXCR4 could also be inactivated in ccr5Δ32 CD4+ T cells, and we show that such cells were resistant to all strains of HIV-1 tested. Loss of CXCR4 also provided protection from X4 HIV-1 in a humanized mouse model, though this protection was lost over time due to the emergence of R5-tropic viral mutants. These data suggest that CXCR4-specific ZFNs may prove useful in establishing resistance to CXCR4-tropic HIV for autologous transplant in HIV-infected individuals

    Design Science Information System Framework for Managing the Articulations of Digital Agroecosystems

    Get PDF
    Agriculture industries and their business ecosystems experience data and information overload because of complex network or interconnected domains linked to a variety of agro-based systems. Data search becomes tedious when specific queries are made to support crucial technical and financial decisions by agroecosystem service providers. Due to accumulated volumes of heterogeneous data and information in multiple primary sources, websites and company servers, the agriculture industry needs a robust and flexible digital agroecosystem development. To address the major challenges, a Design Science Research (DSR) approach is adopted, articulating systematic data mapping workflows and integrating their data structures in different knowledge domains. Purpose of the research is aimed at designing and developing an ontology-based data warehousing framework, with comprehensive multidimensional ontologies that motivated us to present various data modelling architectures in different knowledge-based domain applications. An emphasis is given to spatial-temporal dimensions in the modelling process that affect the structuring of data relationships in large geographic regions, which are typical in the agro-business environment

    Experimental and Computational Approaches for Non-CpG Methylation Analysis

    No full text
    Cytosine methylation adjacent to adenine, thymine, and cytosine residues but not guanine of the DNA is distinctively known as non-CpG methylation. This CA/CT/CC methylation accounts for 15% of the total cytosine methylation and varies among different cell and tissue types. The abundance of CpG methylation has largely concealed the role of non-CpG methylation. Limitations in the early detection methods could not distinguish CpG methylation from non-CpG methylation. Recent advancements in enrichment strategies and high throughput sequencing technologies have enabled the detection of non-CpG methylation. This review discusses the advanced experimental and computational approaches to detect and describe the genomic distribution and function of non-CpG methylation. We present different approaches such as enzyme-based and antibody-based enrichment, which, when coupled, can also improve the sensitivity and specificity of non-CpG detection. We also describe the current bioinformatics pipelines and their specific application in computing and visualizing the imbalance of CpG and non-CpG methylation. Enrichment modes and the computational suites need to be further developed to ease the challenges of understanding the functional role of non-CpG methylation

    Regulation and Functional Significance of 5-Hydroxymethylcytosine in Cancer

    No full text
    Epigenetic modes of gene regulation are important for physiological conditions and its aberrant changes can lead to disease like cancer. 5-hydroxymethylcytosine (5hmC) is an oxidized form of 5-methylcytosine (5mC) catalyzed by Ten Eleven Translocation (TET) enzymes. 5hmC is considered to be a demethylation intermediate and is emerging as a stable and functional base modification. The global loss of 5hmC level is commonly observed in cancers and tumorigenic germline mutations in IDH, SDH and FH are found to be inhibiting TET activity. Although a global loss of 5hmC is characteristic in cancers, locus-specific 5hmC gain implicates selective gene expression control. The definitive role of 5hmC as a tumor suppressing or promoting modification can be deduced by identifying locus-specific 5hmC modification in different types of cancer. Determining the genes carrying 5hmC modifications and its selective variation will open up new therapeutic targets. This review outlines the role of global and locus-specific changes of 5hmC in cancers and the possible mechanisms underlying such changes. We have described major cellular factors that influence 5hmC levels and highlighted the significance of 5hmC in tumor micro environmental condition like hypoxia

    Comprehensive analysis of long non-coding RNAs in early stage breast cancer

    No full text
    Breast cancer is one of the most common cancers in India as well as worldwide. Among Indian females, the age adjusted incidence rate of breast cancer is as high as 25.8 per 100,000 women and mortality rate of 12.7 per 100,000 women. Accumulating evidence highlights the potential role of long non-coding RNAs (lncRNAs) in breast cancer development. LncRNAs are emerging as important players in tumorigenesis as they are known to participate in various cancerous processes including proliferation, apoptosis, and invasion. LncRNAs are reported to be dysregulated in a number of cancers, demonstrating both oncogenic and tumor suppressive roles, thus suggesting their aberrant expression may be a substantial contributor in cancer development. However, their mechanism of action is poorly understood. Several studies have been published describing lncRNA expression profile of various breast cancer subtypes in different stages of cancer; however, their aberrant expression has not been systematically investigated in early stages. We have carried out expression profiling using deep sequencing of total RNAs to identify lncRNA expression profile in ductal carcinoma in situ and early stage breast cancers. We identified 103 differentially expressed (DE) lncRNAs of which 21 lncRNAs showed progressive pattern based on transcripts per million (TPM) in unmatched normal, adjacent normal, ductal carcinoma in situ, and stage 1 breast cancers. We identified several novel lncRNAs including RP11-295M3.4, LINC01614, RP11-527N22.1, RP11-126H7.4 and RAMP-AS1 that have not been reported in breast cancer before. These findings provide insights into lncRNA expression landscape in early stage breast cancers

    Locus-Specific Enrichment Analysis of 5-Hydroxymethylcytosine Reveals Novel Genes Associated with Breast Carcinogenesis

    No full text
    An imbalance in DNA methylation is a hallmark epigenetic alteration in cancer. The conversion of 5-methylcytosine (5-mC) to 5-hydroxymethyl cytosine (5-hmC), which causes the imbalance, results in aberrant gene expression. The precise functional role of 5-hydroxymethylcytosine in breast cancer remains elusive. In this study, we describe the landscape of 5-mC and 5-hmC and their association with breast cancer development. We found a distinguishable global loss of 5-hmC in the localized and invasive types of breast cancer that strongly correlate with TET expression. Genome-wide analysis revealed a unique 5-mC and 5-hmC signature in breast cancer. The differentially methylated regions (DMRs) were primarily concentrated in the proximal regulatory regions such as the promoters and UTRs, while the differentially hydroxymethylated regions (DhMRs) were densely packed in the distal regulatory regions, such as the intergenic regions (>−5 kb from TSSs). Our results indicate 4809 DMRs and 4841 DhMRs associated with breast cancer. Validation of nine 5-hmC enriched loci in a distinct set of breast cancer and normal samples positively correlated with their corresponding gene expression. The novel 5-hmC candidates such as TXNL1, and CNIH3 implicate a pro-oncogenic role in breast cancer. Overall, these results provide new insights into the loci-specific accumulation of 5-mC and 5-hmC, which are aberrantly methylated and demethylated in breast cancer
    corecore