3 research outputs found

    Astro2020 Must Issue Actionable Recommendations Regarding Diversity, Inclusion, and Harassment

    Get PDF
    The 2010 Decadal survey failed to issue any recommendations on diversity and inclusion.Astro2020 cannot make the same mistake. Findings can be ignored by funding agencies;recommendations cannot. In the past decade, multiple groups have assembled detailed actionplans to fix a broken climate within our profession. Astro2020 should play a key role, bysynthesizing this work to produce actionable recommendations to support diversity andinclusion and stop harassment within our profession

    A dense, solar metallicity ISM in the

    No full text
    We present a study of six far-infrared fine structure lines in the z = 4.225 lensed dusty star-forming galaxy SPT 0418−47 to probe the physical conditions of its interstellar medium (ISM). In particular, we report Atacama Pathfinder EXperiment (APEX) detections of the [OI] 145 μm and [OIII] 88 μm lines and Atacama Compact Array (ACA) detections of the [NII] 122 and 205 μm lines. The [OI] 145 μm/[CII] 158 μm line ratio is ∼5× higher compared to the average of local galaxies. We interpret this as evidence that the ISM is dominated by photo-dissociation regions with high gas densities. The line ratios, and in particular those of [OIII] 88 μm and [NII] 122 μm imply that the ISM in SPT 0418−47 is already chemically enriched to nearly solar metallicity. While the strong gravitational amplification was required to detect these lines with APEX, larger samples can be observed with the Atacama Large Millimeter/submillimeter Array (ALMA), and should allow observers to determine if the dense, solar metallicity ISM is common among these highly star-forming galaxies

    Spatially Resolved Water Emission from Gravitationally Lensed Dusty Star-forming Galaxies at z ∼ 3

    No full text
    International audienceWater (H2O), one of the most ubiquitous molecules in the universe, has bright millimeter-wave emission lines that are easily observed at high redshift with the current generation of instruments. The low-excitation transition of H2O, p - {{{H}}}2{{O}}({2}0,2}-{1}1,1}) (ν rest = 987.927 GHz), is known to trace the far-infrared (FIR) radiation field independent of the presence of active galactic nuclei (AGNs) over many orders of magnitude in FIR luminosity ({L}FIR}). This indicates that this transition arises mainly due to star formation. In this paper, we present spatially (∼0.″5 corresponding to ∼1 kiloparsec) and spectrally resolved (∼100 kms-1) observations of p - {{{H}}}2{{O}}({2}0,2}-{1}1,1}) in a sample of four strong gravitationally lensed high-redshift galaxies with the Atacama Large Millimeter/submillimeter Array. In addition to increasing the sample of luminous (>1012 L ⊙) galaxies observed with H2O, this paper examines the {L}{{{H}}2{{O}}}/{L}FIR} relation on resolved scales for the first time at high redshift. We find that {L}{{{H}}2{{O}}} is correlated with {L}FIR} on both global and resolved kiloparsec scales within the galaxy in starbursts and AGN with average {L}{{{H}}2{{O}}}/{L}FIR} = {2.76}-1.21+2.15 × {10}-5. We find that the scatter in the observed {L}{{{H}}2{{O}}}/{L}FIR} relation does not obviously correlate with the effective temperature of the dust spectral energy distribution or the molecular gas surface density. This is a first step in developing p - {{{H}}}2{{O}}({2}0,2}-{1}1,1}) as a resolved star formation rate calibrator
    corecore