56 research outputs found

    Comparisons of degradation kinetics of chloroethenes in groundwater between microcosms and field scale

    Get PDF
    International audienceGroundwater pollution by chlorinated solvents is a major concern since several years. It has been demonstrated that in specific physicochemical conditions, microbial processes like direct reductive dechlorination allow contamination reduction at several sites. Therefore, determination of biodegradation kinetics of chloroethenes is crucial in applying Natural Attenuation protocols on contaminated sites and assessing the potential risks for human health and natural media Biodegradation of chlorinated solvents is effective in highly reduced conditions, which rarely concerns the whole contaminant plume. In this study, direct reductive dechlorination of chloroethenes was studied on two different scales, on microcosms in the laboratory and at the real scale that corresponds to the contaminated site Microcosms studies were conducted in three different ways. (1) sediments sampled from the site and mixed with groundwater modified or not by a synthetic electron donor (Na propionate, Na lactate, toluene), (2) composite sediments coming from several places of the site mixed with groundwater modified or not by a synthetic electron donor; (3) autoclaved sediments and groundwater modified or not by synthetic organic matter. Studies on the real scale were conducted by the achievement of a synthesis of historical data (hydrogeological, geological and physicochemical data) of a polluted site. The synthesis of physicochemical data and then modelling the real site revealed the presence of degradation products of chloroethenes in the plume : cis-1,2-DCE and VC The results of comparisons of degradation kinetics obtained on the laboratory and the field under the same physicochemical conditions showed significant differences. Indeed, biodegradation of chlorinated solvents were faster in lab studies than in the field at the global scale. The existence of chlorinated ethenes biotransformation in microcosms confirmed the presence of a bacterial population able to catalyse reductive dechlorination reaction until CV. It is also likely that the bacterial consortium permitted to degrade other species like electron acceptors; detection of sulphide ions and Fe(II) and the presence of a black precipitate of FeS are proofs of sulphate reducing, ferro reducing and dechlorinating activities. The clear difference that there is between kinetics of degradation on microcosms and field scale could be explained by differences in chemical conditions that are not optimal everywhere in the plume of pollutants. The differences of chemical conditions (electron acceptors, type of natural organic matter, pH, redox potential...) are investigated in details to explain the differences in kinetic constant

    Cinétiques de dégradation des solvants chlorés dans les eaux souterraines - Approches multi-échelles du laboratoire au site réel

    Get PDF
    Since the 50's, the contamination of soils and groundwater by chlorinated solvents significantly increases. These volatile organic compounds are also widely used in industry and the majority of them are considered potential carcinogenic chemicals for human beings. This work is particularly focalised on an innovative strategy of polluted sites management : Natural Attenuation. Several mechanisms govern this approach and among them, it is direct anaerobic reductive dechlorination which seems to be the most significative degradation process. The aim of the work was to evaluate whether the study of reductive dechlorination at various different observation scales allowed for a better characterization of Natural Attenuation on a real site. The site is a still active industrial complex where a PCE (tetrachloroethylene) source zone was discovered. Moreover, another regions contaminated by mineral oils were also characterized. Physicochemical groundwater monitoring enabled to demonstrate the occurence of PCE degradation byproducts directly above the source zone, such as cis-1,2-dichloroethylene and Vinyl Chloride (VC). According to the solution of Domenico et al. (1987), the approximate transport modeling proved that the plume of dissolved organochlorinated compounds fluctuated laterally. In order to confirm the occurrence of direct reductive dechlorination at different locations of the site, several batch reactors were prepared from subsoils and groundwater. Results indicated that complete biodegradation of PCE to ethene is very localized at the site ; furthermore, the growth of dechlorinating bacteria seems to be highly restricted to the content of dissolved organic matter. The experiments carried out in a lab column provided interesting informations about the influence of sulphate and organic matter level on PCE biodegradation. The fittings of first order degradation rates with Phreeqc-2.0 demonstrated that sulfate-reduction and complete transformation of PCE to cis-1,2-DCE could be simulated in specific physicochemical conditions. According to a specific monitoring campaign, different runs carried out with the hydrodynamic model of transport and biodegradation showed that the plume of organochlorinated pollution is narrow because of fast groundwater flux. Therefore, the plume migrates quickly. Biodegradation modeling was a difficult operation, due to difficulties in fitting of chloroethenes concentrations, which are spatially and temporally heterogeneous. At the field scale, estimated degradation rates seem to be reduced, compared to the data measured at laboratory scale.Depuis les annĂ©es 50, les contaminations des sols et des eaux souterraines par les solvants chlorĂ©s se sont multipliĂ©es. Ces composĂ©s organiques volatils sont encore trĂšs frĂ©quemment employĂ©s dans l'industrie et la plupart d'entre eux sont considĂ©rĂ©s comme des produits potentiellement cancĂ©rigĂšnes pour l'homme. Ce travail est particuliĂšrement focalisĂ© sur une stratĂ©gie innovante de gestion de sites polluĂ©s : l'AttĂ©nuation Naturelle. Plusieurs mĂ©canismes rĂ©gissent cette dĂ©marche et parmi eux, c'est la dĂ©chloration rĂ©ductrice anaĂ©robie directe qui semble ĂȘtre le processus de dĂ©gradation le plus significatif. L'objectif de ce travail a Ă©tĂ© d'estimer si l'Ă©tude de la dĂ©chloration rĂ©ductrice Ă  plusieurs Ă©chelles d'observation permettait de mieux caractĂ©riser l'AttĂ©nuation Naturelle sur un site pilote. Le site d'Ă©tude est un complexe industriel encore en activitĂ©, oĂč une source de pollution uniquement constituĂ©e de PCE (tĂ©trachloroĂ©thylĂšne) a Ă©tĂ© mise en Ă©vidence. De plus, diverses zones polluĂ©es par des hydrocarbures d'huiles minĂ©rales ont Ă©tĂ© Ă©galement caractĂ©risĂ©es. Les campagnes de suivi physico-chimique ont permis de montrer qu'Ă  l'aval hydraulique de la source, des sous-produits de biodĂ©gradation du PCE, comme le cis-1,2-DCE (cis-1,2-DichloroĂ©thylĂšne) et le CV (Chlorure de Vinyle), ont Ă©tĂ© dĂ©tectĂ©s trĂšs localement sur le site. La modĂ©lisation approximative selon la solution de Domenico et al. (1987) a dĂ©montrĂ© que le panache de composĂ©s organochlorĂ©s dissous variait latĂ©ralement. Afin de confirmer l'existence de la dĂ©chloration rĂ©ductrice directe sur plusieurs points du site, plusieurs rĂ©acteurs fermĂ©s ont Ă©tĂ© prĂ©parĂ©s Ă  partir de sous-sol et d'eaux souterraines. Les rĂ©sultats ont indiquĂ© que la biodĂ©gradation complĂšte du PCE jusqu'Ă  l'EthylĂšne est trĂšs localisĂ©e sur le site. L'activitĂ© bactĂ©rienne dĂ©chloratrice semble ĂȘtre fortement limitĂ©e par la quantitĂ© de matiĂšre organique dissoute, ce qui laisse suggĂ©rer un manque de donneurs d'Ă©lectrons Ă  l'Ă©chelle rĂ©elle. Les expĂ©rimentations effectuĂ©es dans une colonne de laboratoire ont fourni des informations intĂ©ressantes quant Ă  l'influence des sulfates et de la quantitĂ© de matiĂšre organique sur la biodĂ©gradation du PCE. Les ajustements des constantes de dĂ©gradation du premier ordre sous Phreeqc-2.0 ont montrĂ© que la rĂ©duction des sulfates et la conversion complĂšte du PCE jusqu'au cis-1,2-DCE pouvaient ĂȘtre simultanĂ©es dans certaines conditions physico-chimiques. Les diffĂ©rentes simulations exĂ©cutĂ©es avec le modĂšle d'Ă©coulement, de transport et de biodĂ©gradation, selon une campagne prĂ©cise, ont prouvĂ© que le panache de pollution organochlorĂ©e est de faible largeur ; les Ă©coulements Ă©tant rapides dans cette rĂ©gion, ce panache se dĂ©place assez rapidement. La modĂ©lisation de la biodĂ©gradation s'est rĂ©vĂ©lĂ©e dĂ©licate en raison des difficultĂ©s d'ajustement des concentrations en solvants chlorĂ©s mesurĂ©es, qui sont trĂšs hĂ©tĂ©rogĂšnes spatialement et temporellement. Les constantes de dĂ©gradation estimĂ©es Ă  l'Ă©chelle rĂ©elle semblent ĂȘtre relativement faibles par rapport aux donnĂ©es mesurĂ©es en laboratoire, du fait de l'hĂ©tĂ©rogĂ©nĂ©itĂ© des conditions physico-chimiques modĂ©lisĂ©es Ă  l'Ă©chelle rĂ©elle

    Comparaison de cinétiques de biodégradation du PCE déterminées sur 3 échelles différentes : étude d'une pollution mixte PCE/huiles minérales

    Get PDF
    National audienceLa contamination des eaux souterraines par les chloroĂ©thĂšnes, dont le PCE (tĂ©trachloroĂ©thylĂšne) et le TCE (trichloroĂ©thylĂšne), est devenue une prĂ©occupation majeure ces derniĂšres annĂ©es, du fait de leur caractĂšre cancĂ©rigĂšne avĂ©rĂ©. Parmi toutes les stratĂ©gies de rĂ©habilitation de sites polluĂ©s, l'AttĂ©nuation Naturelle (A.N.) semble ĂȘtre une technologie prometteuse, de part son efficacitĂ© dans certaines conditions ainsi que son faible coĂ»t. Entre tous les mĂ©canismes rĂ©gissant l'A.N., la dĂ©chloration rĂ©ductrice directe est le processus prĂ©pondĂ©rant et permettant la biodĂ©gradation des chloroĂ©thĂšnes la plus significative. L'A.N. a cependant ses limites ; il est trĂšs frĂ©quent d'observer au droit et en aval des sites polluĂ©s en chloroĂ©thĂšnes, l'accumulation de sous-produits de biodĂ©gradation comme le cis-1,2-dichloroĂ©thylĂšne et le Chlorure de Vinyle (CV). La prĂ©sente Ă©tude dĂ©crira des comparaisons de cinĂ©tiques de dĂ©gradation du PCE selon diffĂ©rentes Ă©chelles. Par ces diverses expĂ©riences, nous pourrons ainsi Ă©valuer les diffĂ©rents mĂ©canismes qui sont susceptibles de ralentir voire d'inhiber la biodĂ©gradation du PCE sur un site d'Ă©tude. La dĂ©termination de constantes cinĂ©tiques permettra de donner quelques Ă©lĂ©ments de rĂ©ponse sur l'origine de la conversion incomplĂšte du PCE observĂ©e sur diffĂ©rentes zones du site contaminĂ©

    Cinétiques de dégradation des solvants chlorés dans les eaux souterraines (approche multi-échelles du laboratoire au site réel)

    No full text
    Depuis les annĂ©es 50, la contamination des sols et des eaux souterraines par des solvants chlorĂ©s s est multipliĂ©e. L attĂ©nuation naturelle, une stratĂ©gie innovante de gestion de sites polluĂ©s, est notamment Ă©tudiĂ©e dans ce travail. L objectif a Ă©tĂ© d Ă©valuer si l Ă©tude des processus biologiques Ă  plusieurs Ă©chelles d observation diffĂ©rentes permettait une meilleure caractĂ©risation de l AttĂ©nuation Naturelle sur un site rĂ©el. Le site d Ă©tude est un complexe industriel encore en activitĂ©, oĂč la source de pollution est constituĂ©e de tĂ©trachloroĂ©thylĂšne (PCE). Les suivis de plusieurs rĂ©acteurs fermĂ©s, prĂ©parĂ©s Ă  partir de sols et d eaux souterraines, ont dĂ©montrĂ© que la biodĂ©gradation complĂšte du PCE en EthylĂšne est trĂšs localisĂ©e sur le site. Des expĂ©rimentations rĂ©alisĂ©es en colonne de laboratoire ont confirmĂ© que la rĂ©duction des sulfates et la conversion du PCE jusqu au cis-1,2-dichloroĂ©thylĂšne (cis-1,2-DCE) peuvent ĂȘtre simultanĂ©es dans des conditions physico-chimiques spĂ©cifiques. De plus, les diffĂ©rentes simulations rĂ©alisĂ©es avec le modĂšle d Ă©coulement, de transport et de biodĂ©gradation ont prouvĂ© que le panache de composĂ©s organochlorĂ©s dissous se dĂ©place assez rapidement. Dans cette Ă©tude, les constantes de biodĂ©gradation des solvants chlorĂ©s semblent ĂȘtre bien plus faibles que celles estimĂ©es en laboratoire.BORDEAUX3-BU Lettres-Pessac (335222103) / SudocSudocFranceF

    Speciation and mobility of stable chemical elements associated with uranium mineralization

    No full text
    International audienceUranium (U) ores extracted in France until 2001 can be associated to trace elements (TE) mineral phases. These TE can be potentially toxic according to their forms and/or contents. Some TE present in waste rock and tailings can be relatively mobile and redistributed in the various reservoirs of the critical zone such as soils and sediments. In the case of dredging lake sediments contaminated by mining inputs, the cocktail effect of TE presence, on the mobility of U, remains poorly understood.For that purpose, sediments of Saint-ClĂ©ment Lake (Allier, France) were studied because they are potentially affected by two former mining sites: the U mine of the Bois Noirs Limouzat and the Cu-Snmine of Charrier. The geoaccumulation index and enrichment factor, calculated along a sediment core,highlight significant anthropogenic origin contaminations in Cu and Sn, the highest contamination levels resulting from the rehabilitation of the Charrier tailing pile. The objectives are thus to determine theTE’s solid speciation due to sediments re-oxidation and the geochemical processes governing their mobility.SEM, EPMA analyses and chemical extractions were performed to study the TEs’ bearing phases andleaching tests to understand their stability. First results show that the solid speciation is dominated by cassiterite (SnO2) for Sn and by sulfides e.g., chalcopyrite (CuFeS2) and adsorbed on organic matter for Cu. The standardized TCLP leaching test does not highlight Sn in the leachates but shows Cu concentrations up to 1020 ”g/l, higher than the European norm for surface water (1,6 ”g/l). These first results suggest a low risk of migration of Sn and a potential instability of Cu

    Speciation and mobility of stable chemical elements associated with uranium mineralization

    No full text
    International audienceUranium (U) ores extracted in France until 2001 can be associated to trace elements (TE) mineral phases. These TE can be potentially toxic according to their forms and/or contents. Some TE present in waste rock and tailings can be relatively mobile and redistributed in the various reservoirs of the critical zone such as soils and sediments. In the case of dredging lake sediments contaminated by mining inputs, the cocktail effect of TE presence, on the mobility of U, remains poorly understood.For that purpose, sediments of Saint-ClĂ©ment Lake (Allier, France) were studied because they are potentially affected by two former mining sites: the U mine of the Bois Noirs Limouzat and the Cu-Snmine of Charrier. The geoaccumulation index and enrichment factor, calculated along a sediment core,highlight significant anthropogenic origin contaminations in Cu and Sn, the highest contamination levels resulting from the rehabilitation of the Charrier tailing pile. The objectives are thus to determine theTE’s solid speciation due to sediments re-oxidation and the geochemical processes governing their mobility.SEM, EPMA analyses and chemical extractions were performed to study the TEs’ bearing phases andleaching tests to understand their stability. First results show that the solid speciation is dominated by cassiterite (SnO2) for Sn and by sulfides e.g., chalcopyrite (CuFeS2) and adsorbed on organic matter for Cu. The standardized TCLP leaching test does not highlight Sn in the leachates but shows Cu concentrations up to 1020 ”g/l, higher than the European norm for surface water (1,6 ”g/l). These first results suggest a low risk of migration of Sn and a potential instability of Cu

    Les minĂ©ralisations uranifĂšres, exploitĂ©es en France jusqu’en 2001, peuvent ĂȘtre associĂ©es Ă  des phases minĂ©rales porteuses d’élĂ©ments traces (ET) potentiellement toxiques selon leurs formes et/ou leurs teneurs. Certains ET prĂ©sents dans les stĂ©riles et les rĂ©sidus miniers peuvent ĂȘtre relativement mobiles et ainsi redistribuĂ©s dans les divers rĂ©servoirs de la zone critique, comme les sĂ©dimentslacustres. Compte tenu de l’impact des modes de gestion de ces matĂ©riaux, notamment par curage, l’importance de l’effet cocktail liĂ© Ă  la prĂ©sence d’ET sur la mobilitĂ© de l’U reste mal connue.Pour rĂ©pondre Ă  ce questionnement, une Ă©tude a Ă©tĂ© entreprise sur les sĂ©diments du Lac de SaintClĂ©ment (Allier, France), potentiellement impactĂ©s par l’ancien site minier uranifĂšre des Bois Noirs Limouzat et l’ancienne mine cupro-stannifĂšre de Charrier. Les facteurs d’enrichissement et de gĂ©oaccumulation calculĂ©s le long d’une carotte de sĂ©diments ont mis en Ă©vidence une contamination anthropique significative en Cu et Sn, dont les niveaux les plus importants rĂ©sultent du rĂ©amĂ©nagement du terril de la mine de Charrier. L’enjeu de cette Ă©tude est d’étudier l’évolution de la spĂ©ciation solidede ces ET dans les sĂ©diments gĂ©rĂ©s Ă  terre et d’identifier les processus gĂ©ochimiques rĂ©gissant leur mobilitĂ© en conditions oxydantes.Pour rĂ©pondre Ă  ces objectifs, des analyses minĂ©ralogiques (MEB, EPMA), Ă©lĂ©mentaires (ICP-OES, ICP-MS) et des extractions chimiques ont Ă©tĂ© menĂ©es pour Ă©tudier les phases porteuses des ET ainsi quedes tests de lixiviation pour comprendre leur rĂ©activitĂ©. Les premiers rĂ©sultats montrent que laspĂ©ciation solide de Sn dans les sĂ©diments est dominĂ©e par la cassitĂ©rite (SnO2), phase minĂ©rale provenant du terril de Charrier. Les donnĂ©es de spĂ©ciation sur Cu ont montrĂ© l’existence de sulfures hĂ©ritĂ©s de la mine de Charrier e.g. chalcopyrite (CuFeS2) ainsi que des formes de Cu adsorbĂ©es sur la matiĂšre organique. Le test de lixiviation normĂ© TCLP, simulant un stockage des sĂ©diments en conditions oxydantes, montre l’absence de Sn dans les lixiviats mais prĂ©sente des concentrations en Cu jusqu’à 1020 ”g/l, dĂ©passant les Normes de QualitĂ©s pour l’Environnement (NQE = 1,6 ”g/l) et les teneurs dans les eaux de la rĂ©gion Ă©tudiĂ©e (2,95 ”g/l en moyenne). Ces premiers rĂ©sultats suggĂšrent un risque faible de migration de Sn et une instabilitĂ© potentielle de Cu qui reste Ă  prĂ©ciser

    No full text
    International audienceLes minĂ©ralisations uranifĂšres, exploitĂ©es en France jusqu’en 2001, peuvent ĂȘtre associĂ©es Ă  des phases minĂ©rales porteuses d’élĂ©ments traces (ET) potentiellement toxiques selon leurs formes et/ou leurs teneurs. Certains ET prĂ©sents dans les stĂ©riles et les rĂ©sidus miniers peuvent ĂȘtre relativement mobiles et ainsi redistribuĂ©s dans les divers rĂ©servoirs de la zone critique, comme les sĂ©dimentslacustres. Compte tenu de l’impact des modes de gestion de ces matĂ©riaux, notamment par curage, l’importance de l’effet cocktail liĂ© Ă  la prĂ©sence d’ET sur la mobilitĂ© de l’U reste mal connue.Pour rĂ©pondre Ă  ce questionnement, une Ă©tude a Ă©tĂ© entreprise sur les sĂ©diments du Lac de SaintClĂ©ment (Allier, France), potentiellement impactĂ©s par l’ancien site minier uranifĂšre des Bois Noirs Limouzat et l’ancienne mine cupro-stannifĂšre de Charrier. Les facteurs d’enrichissement et de gĂ©oaccumulation calculĂ©s le long d’une carotte de sĂ©diments ont mis en Ă©vidence une contamination anthropique significative en Cu et Sn, dont les niveaux les plus importants rĂ©sultent du rĂ©amĂ©nagement du terril de la mine de Charrier. L’enjeu de cette Ă©tude est d’étudier l’évolution de la spĂ©ciation solidede ces ET dans les sĂ©diments gĂ©rĂ©s Ă  terre et d’identifier les processus gĂ©ochimiques rĂ©gissant leur mobilitĂ© en conditions oxydantes.Pour rĂ©pondre Ă  ces objectifs, des analyses minĂ©ralogiques (MEB, EPMA), Ă©lĂ©mentaires (ICP-OES, ICP-MS) et des extractions chimiques ont Ă©tĂ© menĂ©es pour Ă©tudier les phases porteuses des ET ainsi quedes tests de lixiviation pour comprendre leur rĂ©activitĂ©. Les premiers rĂ©sultats montrent que laspĂ©ciation solide de Sn dans les sĂ©diments est dominĂ©e par la cassitĂ©rite (SnO2), phase minĂ©rale provenant du terril de Charrier. Les donnĂ©es de spĂ©ciation sur Cu ont montrĂ© l’existence de sulfures hĂ©ritĂ©s de la mine de Charrier e.g. chalcopyrite (CuFeS2) ainsi que des formes de Cu adsorbĂ©es sur la matiĂšre organique. Le test de lixiviation normĂ© TCLP, simulant un stockage des sĂ©diments en conditions oxydantes, montre l’absence de Sn dans les lixiviats mais prĂ©sente des concentrations en Cu jusqu’à 1020 ”g/l, dĂ©passant les Normes de QualitĂ©s pour l’Environnement (NQE = 1,6 ”g/l) et les teneurs dans les eaux de la rĂ©gion Ă©tudiĂ©e (2,95 ”g/l en moyenne). Ces premiers rĂ©sultats suggĂšrent un risque faible de migration de Sn et une instabilitĂ© potentielle de Cu qui reste Ă  prĂ©ciser

    Redox Cycling of Uranium Phosphate Minerals in a Mining-Contaminated Wetland

    No full text
    International audienceReduction of uranium (VI) to low soluble uranium (IV) species in wetlands is expected to limit the transfers of this toxic element to downstream waterways. However, in such environments, long-term uranium (U) scavenging may beperturbed by hydrological and redox fluctuations. Here, based on field [1] and laboratory investigations, we detailthe mechanisms of uranium redistribution from U-phosphate minerals in a heavily contaminated wetland from Brittany,France.Using U LIII-edge (micro-) X-ray absorption spectroscopy, electron microscopy and geochemical analyses, we show that uranium released by the oxidative dissolution of U(IV)-phosphate minerals, especially ningyoite CaU(PO4)2·2H2O, is rapidly converted to organicbound mononuclear U(VI) species. These latter can be then reduced to organic-bound U(IV) species under watersaturated conditions [1]. Moreover, oxic and anoxic incubations of soil samples reveal that specific U-phosphate minerals, autunite Ca(UO2)2(PO4)2·11H2O and lermontovite U(PO4)(OH)·H2O, are the most resistant uranium species to redox cycling occurring in the studied soils.Altogether, the results of this study bring important informations to assess the long-term stability of uranium inseasonally saturated organic-rich mining-impacted environments.[1] Stetten et al. (2018) Environ. Sci. Technol. 52 (22), 13099–1310

    Assessing Migration of Uranium through Chalk Substrate: Field Study and Reactive Transport Modelling

    No full text
    International audienceThe migration of uranium from polluted soil has been investigated in the field, and through modelling of thermodynamics and kinetics of uranium-water-rock interactions. Field monitoring following surface contamination by uranium deposits revealed up to 5 m deep uranium migration in soil and chalk substrate, as well as uranium concentrations in groundwater significantly higher than the geochemical background. Such observations can hardly be explained by a pure reactive transport dominated by reversible adsorption of uranium onto mineral phases. Therefore, a reactive transport model using the HYTEC code has been developed to better assess uranium migration through soil to the carbonate aquifer. Reactive transport modelling shows that adsorption of U (VI) at equilibrium on goethite at pH 7 is responsible for strong immobilization of uranium in the soil and carbonate matrix, matching uranium concentration profiles observed in boreholes. Simulations considering highly mobile ternary complex Ca2UO2(CO3)3(aq) in the aqueous phase cannot account alone for the rapid migration of uranium through the unsaturated zone. Without a mobile colloidal phase, the model clearly underestimates the concentration of aqueous U(VI) that reached groundwater underneath polluted soils
    • 

    corecore