4,675 research outputs found

    A multistream model for quantum plasmas

    Full text link
    The dynamics of a quantum plasma can be described self-consistently by the nonlinear Schroedinger-Poisson system. Here, we consider a multistream model representing a statistical mixture of N pure states, each described by a wavefunction. The one-stream and two-stream cases are investigated. We derive the dispersion relation for the two-stream instability and show that a new, purely quantum, branch appears. Numerical simulations of the complete Schroedinger-Poisson system confirm the linear analysis, and provide further results in the strongly nonlinear regime. The stationary states of the Schroedinger-Poisson system are also investigated. These can be viewed as the quantum mechanical counterpart of the classical Bernstein-Greene-Kruskal modes, and are described by a set of coupled nonlinear differential equations for the electrostatic potential and the stream amplitudes.Comment: 20 pages, 10 figure

    Theory and applications of the Vlasov equation

    Full text link
    Forty articles have been recently published in EPJD as contributions to the topical issue "Theory and applications of the Vlasov equation". The aim of this topical issue was to provide a forum for the presentation of a broad variety of scientific results involving the Vlasov equation. In this editorial, after some introductory notes, a brief account is given of the main points addressed in these papers and of the perspectives they open.Comment: Editoria

    Load distribution in small world networks

    Full text link
    In this paper we introduce a new model of data packet transport, based on a stochastic approach with the aim of characterizing the load distribution on complex networks. Moreover we analyze the load standard deviation as an index of uniformity of the distribution of packets within the network, to characterize the effects of the network topology. We measure such index on the model proposed by Watts and Strogatz as the redirection probability is increased. We find that the uniformity of the load spread is maximized in the intermediate region, at which the small world effect is observed and both global and local efficiency are high. Moreover we analyze the relationship between load centrality and degree centrality as an approximate measure of the load at the edges. Analogous results are obtained for the load variance computed at the edges as well as at the vertices.Comment: 6 pages, 5 figures. Included in conference proceedings International Conference PhysCon 2005 August 24-26, 2005, Saint Petersburg, RUSSI

    Variational approach for the quantum Zakharov system

    Get PDF
    The quantum Zakharov system is described in terms of a Lagrangian formalism. A time-dependent Gaussian trial function approach for the envelope electric field and the low-frequency part of the density fluctuation leads to a coupled, nonlinear system of ordinary differential equations. In the semiclassic case, linear stability analysis of this dynamical system shows a destabilizing r\^ole played by quantum effects. Arbitrary value of the quantum effects are also considered, yielding the ultimate destruction of the localized, Gaussian trial solution. Numerical simulations are shown both for the semiclassic and the full quantum cases.Comment: 6 figure

    Changing the University System Management: a study of the Italian scenario

    Get PDF
    Over recent years, the Italian University System has been handling a phase of deep changes, which have had significant impact on its mission and on the way it operates. The most important of these changes have been to the organisation of universities, their recruitment procedures and in terms of improvements to the quality and efficiency of the university system itself. In this perspective, the objective of this research was to carry out a critical analysis of the process of change, with special reference to improving efficiency by making the transition from cash-based accounting to accrual accounting. In order to achieve this objective, the starting point was the legislation of reference that sets out the terms for the move to financial accrual accounting. A comparative analysis was then carried out at an international level, with the purpose of highlighting the strengths and weaknesses identified during the implementation of these new procedures within the public field. This was followed by an analysis of the details of the theory defining the accounting principles to be used in the process of preparing university’s financial statements. Finally, the study identified the main critical points relating to implementation of the new accounting system, offering, at the same time, several thoughts concerning possible subsequent analyses on this topic

    Comparison of Stochastic Methods for the Variability Assessment of Technology Parameters

    Get PDF
    This paper provides and compares two alternative solutions for the simulation of cables and interconnects with the inclusion of the effects of parameter uncertainties, namely the Polynomial Chaos (PC) method and the Response Surface Modeling (RSM). The problem formulation applies to the telegraphers equations with stochastic coefficients. According to PC, the solution requires an expansion of the unknown parameters in terms of orthogonal polynomials of random variables. On the contrary, RSM is based on a least-square polynomial fitting of the system response. The proposed methods offer accuracy and improved efficiency in computing the parameter variability effects on system responses with respect to the conventional Monte Carlo approach. These approaches are validated by means of the application to the stochastic analysis of a commercial multiconductor flat cable. This analysis allows us to highlight the respective advantages and disadvantages of the presented method

    Efficient Statistical Extraction of the Per-Unit-Length Capacitance and Inductance Matrices of Cables with Random Parameters

    Get PDF
    Cable bundles often exhibit random parameter variations due to uncertain or uncontrollable physical properties and wire positioning. Efficient tools, based on the so-called polynomial chaos, exist to rapidly assess the impact of such variations on the per-unit-length capacitance and inductance matrices, and on the pertinent cable response. Nevertheless, the state-of-the-art method for the statistical extraction of the per-unit-length capacitance and inductance matrices of cables suffers from several inefficiencies that hinder its applicability to large problems, in terms of number of random parameters and/or conductors. This paper presents an improved methodology that overcomes the aforementioned limitations by exploiting a recently-published, alternative approach to generate the pertinent polynomial chaos system of equations. A sparse and decoupled system is obtained that provides remarkable benefits in terms of speed, memory consumption and problem size that can be dealt with. The technique is thoroughly validated through the statistical analysis of two canonical structures, i.e. a ribbon cable and a shielded cable with random geometry and position

    Pathological Behavior in the Spectral Statistics of the Asymmetric Rotor Model

    Get PDF
    The aim of this work is to study the spectral statistics of the asymmetric rotor model (triaxial rigid rotator). The asymmetric top is classically integrable and, according to the Berry-Tabor theory, its spectral statistics should be Poissonian. Surprisingly, our numerical results show that the nearest neighbor spacing distribution P(s)P(s) and the spectral rigidity Δ3(L)\Delta_3(L) do not follow Poisson statistics. In particular, P(s)P(s) shows a sharp peak at s=1s=1 while Δ3(L)\Delta_3(L) for small values of LL follows the Poissonian predictions and asymptotically it shows large fluctuations around its mean value. Finally, we analyze the information entropy, which shows a dissolution of quantum numbers by breaking the axial symmetry of the rigid rotator.Comment: 11 pages, 7 figures, to be published in Phys. Rev.

    Fluid moment hierarchy equations derived from quantum kinetic theory

    Full text link
    A set of quantum hydrodynamic equations are derived from the moments of the electrostatic mean-field Wigner kinetic equation. No assumptions are made on the particular local equilibrium or on the statistical ensemble wave functions. Quantum diffraction effects appear explicitly only in the transport equation for the heat flux triad, which is the third-order moment of the Wigner pseudo-distribution. The general linear dispersion relation is derived, from which a quantum modified Bohm-Gross relation is recovered in the long wave-length limit. Nonlinear, traveling wave solutions are numerically found in the one-dimensional case. The results shed light on the relation between quantum kinetic theory, the Bohm-de Broglie-Madelung eikonal approach, and quantum fluid transport around given equilibrium distribution functions.Comment: 5 pages, three figures, uses elsarticle.cl
    • …
    corecore