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Abstract
Cable bundles often exhibit random parameter variations
due to uncertain or uncontrollable physical properties and
wire positioning. Efficient tools, based on the so-called
polynomial chaos, exist to rapidly assess the impact of such
variations on the per-unit-length capacitance and induc-
tance matrices, and on the pertinent cable response. Never-
theless, the state-of-the-art method for the statistical extrac-
tion of the per-unit-length capacitance and inductance ma-
trices of cables suffers from several inefficiencies that hin-
der its applicability to large problems, in terms of number of
random parameters and/or conductors. This paper presents
an improved methodology that overcomes the aforemen-
tioned limitations by exploiting a recently-published, alter-
native approach to generate the pertinent polynomial chaos
system of equations. A sparse and decoupled system is ob-
tained that provides remarkable benefits in terms of speed,
memory consumption and problem size that can be dealt
with. The technique is thoroughly validated through the
statistical analysis of two canonical structures, i.e., a rib-
bon cable and a shielded cable with random geometry and
position.

1. Introduction
Cable bundles are commonly employed in a variety of
critical applications, including medical, industrial and
aerospace equipment. Their precise position, as well as
their physical properties, are hardly controllable and a
probabilistic assessment of these interconnections is there-
fore crucial. Indeed, electromagnetic compatibility (EMC)
studies comprise the statistical assessment of the coupling
(crosstalk) occurring in wire bundles with random parame-
ters [1]–[10]. Most of the above contributions aimed at de-
riving closed-form expressions for the statistics of the ran-
dom crosstalk. In fact, the brute-force Monte Carlo (MC)
method, which is commonly employed for statistical anal-
yses, is known to require a large number of samples to con-
verge, thus becoming inefficient when the calculation in-
volves many conductors and requires numerical methods.

Among the many recent approaches to account for un-
certainty in electromagnetic problems (see, e.g., [11, 12]),
an alternative strategy was proposed to characterize cable
responses from a statistical standpoint [13]. The approach
is based on the so-called polynomial chaos (PC) frame-

work [14] and was also applied to printed circuit board
(PCB) lines [15]. According to PC, the stochastic electri-
cal quantities, i.e., the line voltages, currents and per-unit-
length (p.u.l.) parameters, are expanded in series of orthog-
onal polynomials. Once the series coefficients are deter-
mined, pertinent statistical information is readily obtained
from these expansions.

The calculation of the PC-expansion (PCE) coefficients
of the p.u.l. capacitance and inductance matrices for ran-
dom cables was specifically addressed in [16]. A new nu-
merical scheme was put forward based on the twofold ex-
pansion of the charge distributions along the wire periph-
eries in terms of Fourier and PC series. A deterministic
system of equations for the PCE coefficients is constructed
by applying a stochastic Galerkin method (SGM) [17]
to the classical numerical schemes for circular conduc-
tors [18]–[20], and then solved by standard linear system
inversion. The technique was successfully used for the sta-
tistical assessment of crosstalk in cable bundles [21]. How-
ever, the approach in [16] rapidly becomes intractable when
a large number of random parameters and/or conductors is
considered.

In this paper, the aforementioned limitations are pin-
pointed and overcome by adopting a new strategy to con-
struct the deterministic system of equations for the extrac-
tion of the PCE coefficients of the p.u.l. capacitance and
inductance. Namely, the stochastic testing (ST), proposed
in [22] for statistical circuit simulation, is used in place
of the SGM. This consists of a point matching or colloca-
tion [23], rather than Galerkin, approach. ST yields a sys-
tem of equations that is inherently sparse and decoupled,
thus allowing a much faster and less memory-demanding
computation.

The rest of the paper is organized as follows: Section 2
briefly recalls the deterministic numerical scheme for the
calculation of the p.u.l. capacitance and inductance matri-
ces for circular wires. The principles of the PC-based ap-
proach and the state-of-the-art stochastic scheme to calcu-
late the PCE coefficients of the p.u.l. parameters are sum-
marized in Section 3. Section 4 outlines the advocated
ST-based technique. Numerical validations are provided in
Section 5. Finally, conclusions are drawn in Section 6.
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Figure 1: System of dielectric-coated wires. The charge
distributions ρk and ρ′k on the kth conductor and dielectric
peripheries, respectively, are indicated, together with the
potential ϕi and the normal components of the displacement
field D⃗ they produce on conductor i (k, i = 0, . . . , n− 1).

2. Deterministic Scheme
The classical deterministic numerical scheme for the calcu-
lation of the p.u.l. capacitance and inductance matrices for
circular conductors [18]–[20] is presented first. The discus-
sion starts from a system of n wires like in Fig. 1, with the
zeroth wire being the reference for line voltages and the re-
turn path for line currents. Owing to the circular symmetry,
the charge distributions ρ and ρ′ on the conductor and di-
electric peripheries, respectively, are expanded as Fourier
series:

ρk(θk) = ak0 +

A∑
m=1

akm cos(mθk) +

A∑
m=1

bkm sin(mθk),

(1a)

ρ′k(θk) = a′k0 +
A∑

m=1

a′km cos(mθk) +
A∑

m=1

b′km sin(mθk),

(1b)

with k = 0, . . . , n − 1. The number of expansion terms
N = 1 + 2A defines the accuracy of the calculation.
A larger N is required when the charge distributions are
strongly nonuniform, which is caused by wire proximity.
Hence, the worst-case scenario is the one of nearly touch-
ing wires, for which the scheme is found to converge for
A ≥ 10 (i.e., N ≥ 21) [18]. Specifically, conductor prox-
imity turns out to be more critical than dielectric proximity,
which makes the convergence even faster for coated wires.

Each of the charge distributions produces an electric po-
tential ϕ as well as an electric field E⃗ = −∇ϕ. There exist
a closed-form expression for the total potential and electric
field in a given point in the space, as a result of the super-
position of all the charge distributions [24]. To solve for the
all 2nN Fourier coefficients, two types of boundary condi-
tions are enforced: i) the potential on each conductor inter-
face must be independent of the angular position θ; ii) the
difference between the normal components of the electric
displacement field D⃗ = εE⃗ across each dielectric interface
must be null. Both boundary conditions are enforced at N
discrete points on each metallic and dielectric interface of

the n wires, yielding a system of 2nN equations in the form[
Φ
0

]
=

[
D11 D12

D21 D22

] [
A
A′

]
, (2)

where Φ = [Φ0, . . . ,Φn−1]
T , with Φi = [ϕi, . . . , ϕi] of

length N and ϕi being the potential on the periphery of the
ith conductor. Vectors A and A′ collect the Fourier coef-
ficients of the charge distributions, whilst the contributions
of the latter fill matrices Duv (u, v = 1, 2) [24].

The entries of the generalized capacitance matrix C are
defined as [18]

Cki =
2πrwkak0 + 2πrdka

′
k0

ϕi

∣∣∣∣ϕl=0
∀l ̸=i

(3)

where rwk and rdk are the conductor and dielectric radii
of the kth wire, respectively (see Fig. 1). The coefficients
ak0 and a′k0 are the the leading terms in the Fourier expan-
sions (1), and are computed via the inversion of (2).

The entries of the standard (Maxwellian) p.u.l. capaci-
tance matrix C, as well as those of the p.u.l. inductance ma-
trix L, are readily derived [19]. When the wires are lying
above an infinite ground plane, a similar system of equa-
tions can be obtained by considering the additional contri-
butions from the wire images [19]. Finally, circular shields
can be accounted for as additional conductors by expanding
the charge distribution on their inner peripheries as in (1a).

3. Polynomial Chaos-Based Analysis
In this section, the state-of-the-art numerical scheme for the
extraction of the capacitance and inductance PCE coeffi-
cients for circular conductors is reviewed and its limitations
are highlighted. Only the equations that are relevant for the
present paper are reported. For detailed information, the
reader should refer to [16].

3.1. The Polynomial Chaos Expansion

Let the problem become stochastic and dependent on d RVs
denoted as ξ = [ξ1, . . . , ξd]. For the sake of simplicity,
and in the general absence of information on the correla-
tion among wire parameters, only the case of independent
RVs is considered in this paper. It is worth mentioning that
dependent parameters can be included in a relatively easy
fashion, based on Karhunen-Loève expansion [25], only
when they are Gaussian distributed (see also [26]). The
modeling of dependent and non-Gaussian parameters still
represents an active field of research instead [17]. More-
over, it is further assumed that, within the given variability,
the overlap between wires cannot occur or is extremely un-
likely.

Since the p.u.l. parameters depend on the RVs ξ, they
become stochastic themselves. Any stochastic quantity is
expressed as a PCE [17]. For instance, the p.u.l. capacitance
is written as

C(ξ) ≈
P∑

γ=0

Cγφγ(ξ), (4)2
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where Cγ are the pertinent PCE (matrix) coefficients,
whilst {φγ}Pγ=0 forms a complete basis of multivariate
polynomial functions that are orthonormal with respect to
the joint probability density function (PDF) w(ξ) of ξ.

The multivariate polynomials φγ(ξ) satisfy the or-
thonormality condition

⟨φγ , φβ⟩ =
∫
Rd

φγ(ξ)φβ(ξ)w(ξ)dξ = δγβ , (5)

with δγβ denoting the Kronecker’s delta. They are con-
structed as the product combination of the univariate poly-
nomials that are orthonormal with respect to the univariate
PDF of ξi [17]. For Gaussian and uniform RVs, these uni-
variate basis functions are the Hermite and Legendre poly-
nomials, respectively [14]. By selecting polynomials of to-
tal degree up to p, the number of PCE terms is

K = P + 1 =
(p+ d)!

p!d!
, (6)

and choosing p = 2 can already provide satisfactory accu-
racy [16, 21].

Once the coefficients of the PCE are available, statis-
tical information is readily extracted, either analytically or
numerically, from (4). For example, the average p.u.l. ca-
pacitance matrix µC corresponds to

µC = C0, (7)

while its standard deviation σC is

σC =

√√√√ P∑
γ=1

C2
γ , (8)

where the square and square root in (8) are not intended
as matrix operations, but rather as operations on each indi-
vidual entry. The derivation of closed-form expressions for
higher-order moments becomes increasingly more cumber-
some [26]. However, this information is easily retrieved
numerically by randomly sampling the PCE (4). The ra-
tionale of PC-based approaches is that the determination of
the coefficients Cγ is usually much faster than collecting
statistical information using e.g., MC or similar methods.

It is worth mentioning that the knowledge of the PCE
coefficients of the capacitance and inductance matrices not
only provides pertinent statistics. It also allows to ob-
tain stochastic information concerning the cable response,
like for example the crosstalk between the wires. This is
achieved through the simulation of an equivalent, determin-
istic cable with augmented p.u.l. matrices, which are con-
structed from the PCE coefficients of the capacitance and
inductance matrices [13].

3.2. Calculation of the Expansion Coefficients

Given the PCE (4) and the definition of the inner prod-
uct (5), different strategies are available to solve for the
unknown PCE coefficients [17, 23, 26]. Sampling-based

strategies, including pseudo-spectral or collocation meth-
ods, as well as regression-based techniques [27]–[29], sam-
ple the responses at a suitable subset of points in the random
space. The PC coefficients are then retrieved via quadra-
ture, interpolation or linear regression of these samples, re-
spectively. In particular, the pseudo-spectral method is a
projection-based approach that calculates the PCE coeffi-
cients according to the classical projection theorem:

Cγ , ⟨C, φγ⟩ =
∫
Rd

C(ξ)φγ(ξ)w(ξ)dξ. (9)

i.e., by integration of the p.u.l. matrix in the random space.
The integration is carried out for every matrix entry via
Gaussian quadrature rules [30].

The sampling-based approaches are intrinsically non-
intrusive, but the required number of samples rapidly grows
with the number of RVs, even when sparse grids are
adopted. It is important to remark that, except for the case
of bare and widely-spaced wires, for which close-form re-
sult are available [24], the evaluation of the p.u.l. matrices
requires the numerical scheme in Section 2. This hinders
the efficient calculation of the many samples required by
these techniques.

The SGM is an alternative, intrusive approach that re-
quires a modification of the governing equations, but po-
tentially allows for a more accurate simulation [17]. Unfor-
tunately, the SGM requires to solve a larger set of coupled
equations, which dramatically reduces the efficiency when
the problem dimension is large. In [16], this stochastic nu-
merical scheme was integrated in the classical determinis-
tic procedure for the determination of the p.u.l. matrices of
cable bundles described in Section 2, but the effectiveness
was limited to structures consisting of a limited number of
wires and RVs, as explained in the next section.

3.3. State-of-the-Art Galerkin-Based Scheme

The stochastic scheme [16] is based on the additional
expansion of the (random) charge distributions (1) into
PC series. Specifically, each Fourier coefficient becomes
ξ-dependent and is represented with a PCE like (4), e.g.,

akm(ξ) ≈
P∑

γ=0

akm,γφγ(ξ), (10)

and similarly for bkm, a′km and b′km. The potentials ϕi and
the entries of matrices Duv in (2) are also expanded. To
obtain the PCE coefficients for matrices Duv , a pseudo-
spectral integration (refer to Section 3.2) is applied to their
analytical entries.

Then, a SGM, consisting in weighing the resulting
equations using the basis functions φγ and integrating them
with the inner product (5), is applied, leading to the follow-
ing augmented and deterministic system[

Φ̂
0

]
=

[
D̃11 D̃12

D̃21 D̃22

] [
Â

Â′

]
. (11)
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In (11), Φ̂ is a vector collecting the PCE coeffi-
cients ϕi,γ of the wire potentials, whilst the coefficients of
the charge distributions are collected into Â and Â′.

The PCE coefficients of the generalized p.u.l. capaci-
tance matrix are obtained, after the inversion of (11), sim-
ilarly to (3), using the PCE coefficients ak0,γ and a′k0,γ
of the first Fourier terms. The PCE coefficients of the
Maxwellian p.u.l. capacitance matrix and those of the p.u.l.
inductance matrix are derived via simple matrix manipula-
tions.

It is important to point out that:

1. The numerical integration of the entries of matri-
ces Duv requires (p + 1)d evaluations of such ma-
trices.

2. The PCE coefficients are K for each variable, thus
yielding a system (11) of dimension 2nNK.

Since the system is full and does not have any sparsity pat-
tern, its dimension rapidly becomes intractable when the
number of wires n and/or RVs d increases. Indeed, the cre-
ation of (11) is very memory intensive and its inversion is
computationally demanding. These are the major issues in
the numerical scheme proposed in [16].

4. Proposed Improved Implementation
This section provides the proposed improved implemen-
tation and compares its performance against the previous
methodology described in Section 3.

4.1. Stochastic Testing-Based Scheme

The departure point is the system (2), which is here rewrit-
ten explicitly by emphasizing the dependence on ξ:{

Φ(ξ) = D11(ξ)A(ξ) +D12(ξ)A
′(ξ)

0 = D21(ξ)A(ξ) +D22(ξ)A
′(ξ)

(12)

The ξ-dependent vectors Φ, A and A′ are again written
as PCEs, leading to

P∑
γ=0

Φγφγ(ξ) ≈ D11(ξ)
P∑

γ=0

Aγφγ(ξ)

+D12(ξ)

P∑
γ=0

A′
γφγ(ξ)

0 ≈ D21(ξ)

P∑
γ=0

Aγφγ(ξ) +D22(ξ)

P∑
γ=0

A′
γφγ(ξ)

,

(13)
where Φγ , Aγ and A′

γ collect the γth PCE coefficients of
the wire potentials and charge distributions.

Suppose now that a suitable set of K test
points {ξν}Kν=1 in the random space Rd is available.
Point matching (13), i.e., enforcing the system to be

satisfied at the points ξν , yields deterministic equations:

P∑
γ=0

Φγwνγ =D11|ν
P∑

γ=0

Aγwνγ+D12|ν
P∑

γ=0

A′
γwνγ ,

0 =D21|ν
P∑

γ=0

Aγwνγ+D22|ν
P∑

γ=0

A′
γwνγ ,

(14)
with ν = 1, . . . ,K, and having defined the deterministic
scalar and matrix coefficients wνγ = φγ(ξν) and Duv|ν =
Duv(ξν), respectively, i.e., the PC basis functions and the
system matrices evaluated in the test points. A proper set
of test points ξν is generated with the algorithm proposed
in [22].

Collecting the equations (14) ∀ν = 1, . . . ,K leads to
the following system{

ΓΦ̂ = Λ11ΓÂ+Λ12ΓÂ
′,

0 = Λ21ΓÂ+Λ22ΓÂ
′,

(15)

where the definitions of Φ̂, Â and Â′ are as in (11). The
matrix quantities are

Λuv =

 Duv|ν=1
. . .

Duv|ν=K

 , (16)

with u, v = 1, 2, and

Γ = W ⊗ InN , (17)

where ⊗ denotes the Kronecker product, W is a K×K ma-
trix with entries wνγ , and InN denotes the identity matrix
of size nN × nN .

The system (15) has the same size as the SGM-based
system (11), i.e., 2nNK, but with an additional and re-
markable property: matrices Γ and Λuv are all inherently
sparse, the former stemming from the Kronecker product
of an identity matrix, and the latter being block diagonal.

The inversion of the system (15) is[
Â

Â′

]
=

[
Γ−1

Γ−1

][
Λ11 Λ12

Λ21 Λ22

]−1[
Γ
Γ

][
Φ̂
0

]
, (18)

where
Γ−1 = W−1 ⊗ InN . (19)

The inverse Ψ of the block matrix Λ is [31]

Ψ =

[
Ψ11 Ψ12

Ψ21 Ψ22

]
= Λ−1 =

[
Λ11 Λ12

Λ21 Λ22

]−1

(20)

with

Ψ11 = S−1
22 (21a)

Ψ12 = −Λ−1
11 Λ12S

−1
11 (21b)

Ψ21 = −Λ−1
22 Λ21S

−1
22 (21c)

Ψ22 = S−1
11 , (21d)
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and

S11 = Λ22 −Λ21Λ
−1
11 Λ12 (22a)

S22 = Λ11 −Λ12Λ
−1
22 Λ21 (22b)

being the Schur complements [32] of matrices Λ11 and
Λ22, respectively.

Moreover, since the matrices Λuv are block diagonal,
the matrices Ψuv are also block diagonal, and each block
is computed by applying operations (21) to the individual
blocks, i.e.,

Ψ11|ν = (D11|ν − D12|ν [D22|ν ]
−1 D21|ν)

−1 (23a)

Ψ12|ν = −[D11|ν ]
−1 D12|ν Ψ22|ν (23b)

Ψ21|ν = −[D22|ν ]
−1 D21|ν Ψ11|ν (23c)

Ψ22|ν = (D22|ν − D21|ν [D11|ν ]
−1 D12|ν)

−1, (23d)

where, consistently with (16), the notation |ν indicates that
the corresponding block is evaluated for the test point ξν .
This means that the operations (23) can be carried out itera-
tively for each test point ξν , by looping over ν = 1, . . . ,K.
The evaluation of Duv|ν is performed according to the tra-
ditional deterministic calculation in Section 2, by consid-
ering the values of the cable parameters that correspond to
the random sample ξν .

According to (18) and the definition (20), the Fourier-
PC coefficients are computed as

Â = Γ−1Ψ11ΓΦ̂ (24a)

Â′ = Γ−1Ψ21ΓΦ̂ (24b)

where, due to the particular structure of matrix Φ̂, with n
columns filled-in by ones and zeros (see [16]), the calcu-
lation of the product ΓΦ̂ amounts to the sums of the first
n groups of N columns of Γ. The generalized p.u.l. ca-
pacitance matrix, the Maxwellian p.u.l. capacitance matrix
and the p.u.l. inductance matrix are then calculated via the
same procedure used in [16]. To further improve the ef-
ficency, the remaining SGM-based operations involved in
these computations are possibly replaced by analogous ST
procedures.

4.2. Comparison with the Galerkin-Based Scheme

The ST-based scheme outlined in the previous section has
some remarkable computational advantages with respect to
the state-of-the-art Galerkin-based approach:

1. The matrices Λuv are block diagonal, thus allowing
to construct the inverse of Λ, to be used in (24), iter-
atively using relations (23).

2. The matrices Λuv, Γ and Γ−1 are sparse, thus requir-
ing much less memory consumption and allowing to
speed-up matrix operations, in particular the multi-
plication in (24). Moreover, the matrix Γ−1 is effi-
ciently computed through the inversion of a smaller
matrix, i.e., W in (19).

3. The construction of system (15) does not require the
numerical integration of matrices Duv.

In summary, the inversion of (15) requires to evaluate
K matrices of size 2nN×2nN , to apply operations (23) to
them, and to perform the multiplication (24) of three sparse
matrices of size 2nNK×2nNK. As shown in the next sec-
tion, this turns out to be much faster and less memory inten-
sive than directly building and inverting the full system (11)
of size 2nNK×2nNK, as required by the Galerkin-based
approach. Furthermore, it is worth noting that the terms
wνγ only depend on the type of basis functions φγ and on
the set of testing points ξν . These are in turn only depen-
dent on the distribution type and on the number of RVs d.
Therefore, the matrices W for a wide class of problems can
be pre-computed and stored into look-up tables.

5. Validation and Numerical Results
The advocated ST-based numerical scheme has been im-
plemented in MATLABr. In this section, its performance
against the previous Galerkin-based technique and the ref-
erence MC method is thoroughly assessed. Two differ-
ent cable structures are considered: a ribbon cable and a
shielded cable.

For the MC analysis, an iterative simulation is imple-
mented starting from a set of 100 samples. The number of
samples is then doubled at every iteration, until the standard
deviations of the p.u.l. parameters converge within a given
threshold. As a stopping criterion, a maximum relative dif-
ference below 1% is sought between the new and the old
estimation of the standard deviations. It is relevant to point
out the exponential growth of the sample size is necessary
to ensure that the new samples bring enough additional in-
formation to the already available data.

5.1. Ribbon Cable

50± 2 mil

0 1 2 3 4
35± 3.0

mil

15 mil

Figure 2: Cross-section of the ribbon cable for the first ap-
plication test case. The deviations indicated are inteded as
standard deviations of a Gaussian distribution.

The first application considers the 5-wire ribbon ca-
ble in Fig. 2, whose geometry and parameters are taken
from [24]. The wire-to-wire separation is 50 mil and the
conductor radius is 7.5 mil. The radius of the dielectric
coating is 17.5 mil, and its relative permittivity is 3.5. The
wires are numbered sequentially from left to right, the left-
most conductor being the reference. Two different scenar-
ios are analyzed: in the first one, d = 4 RVs are considered,
i.e., each wire-to-wire separation, assumed to have a Gaus-
sian distribution with a standard deviation of 2 mil. In the
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Table 1: Standard deviations of the p.u.l. inductance and capacitance matrix entries for the ribbon cable of Fig. 2.

standard deviation for scenario #1 (d = 4) standard deviation for scenario #2 (d = 9)
L-matrix [H] C-matrix [F] L-matrix [H] C-matrix [F]

entry MC PC MC PC MC PC MC PC
11 1.68 × 10−8 1.68 × 10−8 1.27 × 10−12 1.27 × 10−12 1.68 × 10−8 1.68 × 10−8 2.28 × 10−12 2.28 × 10−12

12 1.33 × 10−8 1.33 × 10−8 9.65 × 10−13 9.67 × 10−13 1.34 × 10−8 1.33 × 10−8 1.43 × 10−12 1.43 × 10−12

13 1.15 × 10−8 1.15 × 10−8 3.75 × 10−14 3.73 × 10−14 1.15 × 10−8 1.15 × 10−8 1.59 × 10−13 1.60 × 10−13

14 1.07 × 10−8 1.07 × 10−8 3.33 × 10−14 3.34 × 10−14 1.07 × 10−8 1.07 × 10−8 1.17 × 10−13 1.18 × 10−13

22 1.24 × 10−8 1.25 × 10−8 1.27 × 10−12 1.27 × 10−12 1.25 × 10−8 1.25 × 10−8 2.29 × 10−12 2.28 × 10−12

23 1.15 × 10−8 1.16 × 10−8 9.65 × 10−13 9.67 × 10−13 1.16 × 10−8 1.16 × 10−8 1.43 × 10−12 1.43 × 10−12

24 9.76 × 10−9 9.79 × 10−9 4.89 × 10−14 4.89 × 10−14 9.77 × 10−9 9.79 × 10−9 1.94 × 10−13 1.94 × 10−13

33 1.03 × 10−8 1.03 × 10−8 1.27 × 10−12 1.27 × 10−12 1.03 × 10−8 1.03 × 10−8 2.29 × 10−12 2.28 × 10−12

34 1.07 × 10−8 1.07 × 10−8 9.76 × 10−13 9.73 × 10−13 1.06 × 10−8 1.07 × 10−8 1.45 × 10−12 1.46 × 10−12

44 8.89 × 10−9 8.94 × 10−9 1.00 × 10−12 1.00 × 10−12 8.95 × 10−9 8.94 × 10−9 1.50 × 10−12 1.50 × 10−12

second case, an additional set of five RVs, i.e., the radii of
the dielectric coatings, with a standard deviation of 1.5 mil,
is included, leading to an overall number of d = 9 RVs.
It should be noted that an overlap of the wires might in
principle occur, but this is extremely unlikely because of
the relatively large difference between the gap and the stan-
dard deviations of the separation and coat thickness. For
the Fourier expansion of the charge distributions, A = 10
is considered.

Tab. 1 collects the standard deviations of the entries of
the p.u.l. inductance and capacitance matrices for the two
scenarios. Owing to the matrix symmetry, only the up-
per triangular parts are indicated. The results obtained by
means of the proposed PC technique with p = 3 are com-
pared against the estimation from a MC analysis. It is worth
noting that no difference is found for the standard deviation
of the inductance matrix in the second scenario, because
the additional variations considered concerns the dielectrics
and as such they affect the capacitance matrix only.
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Figure 3: Convergence of the MC simulation for the stan-
dard deviation of the p.u.l. parameters of the ribbon cable.

Fig. 3 shows the convergence of the MC simulation, by
indicating the progress of the maximum relative difference
on the standard deviations of the inductance and capaci-
tance matrices as the sample size is increased. The tar-
get accuracy of 1% is achieved after 51200 runs for both
the d = 4 and d = 9 scenarios, leading to a simulation
time of 56 min and 16 s. As far as the computational effi-
ciency is concerned, Tab. 2 collects the execution times for
MC and the advocated ST-based method with first-, second-
and third-order PCEs. The simulation time of the previous
SGM-based implementation, when not run out of memory,
is also provided within parenthesis. The table additionally
reports the accuracy of ST, defined as the maximum differ-
ence with respect to MC estimations. In the first scenario,
using p = 2 already suffices to reach an accuracy below 1%.
Moreover, the new numerical scheme provides impressive
speed-ups of over three orders of magnitude against MC.
For the second scenario, which considers a relatively large
number of RVs, the ST-based technique requires a third-
order expansion to achieve a similar accuracy, nevertheless
still providing a remarkable speed-up of 130×.

Table 2: Simulation times and accuracy for the ribbon cable
analysis.

PC d = 4 PC d = 9

MC 1st 2nd 3rd 1st 2nd 3rd

time 3376 s
0.6 s 1.3 s

2.5 s
0.9 s

4.2 s 26.4 s(1.7 s) (27 s) (27 s)

accuracy – 3.7% 0.5% 0.5% 7.2% 1.8% 0.5%

speed-up – 5600× 2600× 1350× 3750× 800× 130×

5.2. Shielded Cable

In the second application example, the shielded cable of
Fig. 4 is analyzed. The structure is taken from [20]. The
conductors, the dielectric coatings and the shield have nor-
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Table 3: Standard deviations of the p.u.l. inductance and capacitance matrix entries for the shielded cable of Fig. 4.

standard deviation for scenario #1 (d = 6) standard deviation for scenario #2 (d = 12)
L-matrix [H] C-matrix [F] L-matrix [H] C-matrix [F]

entry MC PC MC PC MC PC MC PC
11 1.91 × 10−9 1.91 × 10−9 4.14 × 10−12 4.14 × 10−12 1.91 × 10−9 1.91 × 10−9 4.19 × 10−12 4.19 × 10−12

12 1.03 × 10−8 1.03 × 10−8 2.64 × 10−12 2.65 × 10−12 1.03 × 10−8 1.03 × 10−8 2.64 × 10−12 2.65 × 10−12

22 5.22 × 10−9 5.23 × 10−9 3.33 × 10−12 3.33 × 10−12 5.32 × 10−9 5.33 × 10−9 4.82 × 10−12 4.77 × 10−12

23 8.62 × 10−9 8.64 × 10−9 1.65 × 10−12 1.65 × 10−12 1.29 × 10−8 1.29 × 10−8 4.23 × 10−12 4.20 × 10−12

24 5.61 × 10−9 5.62 × 10−9 5.88 × 10−14 5.85 × 10−14 5.98 × 10−9 5.97 × 10−9 6.67 × 10−14 6.66 × 10−14

25 4.91 × 10−9 4.92 × 10−9 6.54 × 10−15 6.54 × 10−15 4.89 × 10−9 4.90 × 10−9 6.74 × 10−15 6.74 × 10−15

1 2

34

5

6 7

Figure 4: Cross-section of the shielded cable for the second
application test case. The radii of the wires, dielectric in-
sulations and shield are of 1, 2 and 10 units, respectively.
Wires #2 to #7 are situated radially at 5 units from wire #1.

malized radii of 1, 2 and 10 units of length, respectively.
Wire #1 is located at the center of the shield, whilst the re-
maining six wires lie at 5 units of length from the center.
The relative permittivity of the dielectric coatings is 4. Two
different scenarios are again considered. In the first case,
the radial positions of the wires #2 ... #7 are considered
as independent uniform RVs in the range [4.5, 5.5] (hence,
d = 6). In the second case, both the horizontal and ver-
tical coordinates of these wires are considered as uniform
RVs, with variations of ±10% around their nominal posi-
tions. For this structure, wire overlap never occurs within
the given uncertainty bounds. For the charge distributions,
A = 10 Fourier coefficients are again considered.

Tab. 3 shows the standard deviations of the p.u.l. induc-
tance and capacitance matrix entries for the two scenarios,
estimated by means of both MC and PC with p = 3. Ow-
ing to the symmetry of the structure, the deviations of some
entries coincide and are therefore omitted from the table.
The MC analysis, whose convergence is shown in Fig. 5,
achieves again the target accuracy of 1% after 51200 runs,

which in this case correspond to a simulation time of 2 h
and 23 min.
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Figure 5: Convergence of the MC simulation for the stan-
dard deviation of the p.u.l. parameters of the shielded cable.

Table 4: Simulation times and accuracy for the shielded
cable analysis.

PC d = 6 PC d = 12

MC 1st 2nd 3rd 1st 2nd 3rd

time 8565 s 1.2 s 4.4 s 16.1 s 2.0 s 17.4 s 230 s

accuracy – 21% 3.9% 0.9% 26% 11% 1.0%

speed-up – 7100× 1950× 530× 4300× 490× 37×

Tab. 4 collects the main figures concerning the effi-
ciency and the accuracy of the proposed method. A signifi-
cant speed-up of 37× is achieved even when up to 12 vari-
ables are included. For both scenarios, third-order PCEs
are needed to approach the MC accuracy. For this example,
the SGM implementation only executes for d = 6 and a
first-order PCE, for which it takes 14 s.
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6. Conclusions
This paper presents a considerable improvement of the
state-of-the-art technique for the extraction of the PCE co-
efficients of the p.u.l. capacitance and inductance matrices
for cables with random parameters. The novelty of the ap-
proach lies in the fact that a point matching technique, i.e.,
ST, is used in place of the traditional SGM. As such, the
new equations are decoupled and sparse, thus allowing for
a much faster solution and the handling of larger problems,
in terms of number of conductors and/or RVs. The tech-
nique is validated via the statistical assessment of the p.u.l.
capacitance and inductance matrices of a ribbon cable and
a shielded cable with random geometrical parameters.
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