391 research outputs found

    Sports & Culture Centre

    Get PDF
    Polycarbonate skinhttps://openscholarship.wustl.edu/bcs/1198/thumbnail.jp

    Peroxisome proliferator-activated receptor α (PPARα) protects against oleate-induced INS-1E beta cell dysfunction by preserving carbohydrate metabolism

    Get PDF
    Aims/hypothesis: Pancreatic beta cells chronically exposed to fatty acids may lose specific functions and even undergo apoptosis. Generally, lipotoxicity is triggered by saturated fatty acids, whereas unsaturated fatty acids induce lipodysfunction, the latter being characterised by elevated basal insulin release and impaired glucose responses. The peroxisome proliferator-activated receptor α (PPARα) has been proposed to play a protective role in this process, although the cellular mechanisms involved are unclear. Methods: We modulated PPARα production in INS-1E beta cells and investigated key metabolic pathways and genes responsible for metabolism-secretion coupling during a culture period of 3days in the presence of 0.4mmol/l oleate. Results: In INS-1E cells, the secretory dysfunction primarily induced by oleate was aggravated by silencing of PPARα. Conversely, PPARα upregulation preserved glucose-stimulated insulin secretion, essentially by increasing the response at a stimulatory concentration of glucose (15mmol/l), a protection we also observed in human islets. The protective effect was associated with restored glucose oxidation rate and upregulation of the anaplerotic enzyme pyruvate carboxylase. PPARα overproduction increased both β-oxidation and fatty acid storage in the form of neutral triacylglycerol, revealing overall induction of lipid metabolism. These observations were substantiated by expression levels of associated genes. Conclusions/interpretation: PPARα protected INS-1E beta cells from oleate-induced dysfunction, promoting both preservation of glucose metabolic pathways and fatty acid turnove

    MDM2 facilitates adipocyte differentiation through CRTC-mediated activation of STAT3

    Get PDF
    The ubiquitin ligase MDM2 is best known for balancing the activity of the tumor suppressor p53. We have previously shown that MDM2 is vital for adipocyte conversion through controlling Cebpd expression in a p53-independent manner. Here, we show that the proadipogenic effect of MDM2 relies on activation of the STAT family of transcription factors. Their activation was required for the cAMP-mediated induction of target genes. Interestingly, rather than influencing all cAMP-stimulated genes, inhibition of the kinases directly responsible for STAT activation, namely JAKs, or ablation of MDM2, each resulted in abolished induction of a subset of cAMP-stimulated genes, with Cebpd being among the most affected. Moreover, STATs were able to interact with the transcriptional cofactors CRTC2 and CRTC3, hitherto only reported to associate with the cAMP-responsive transcription factor CREB. Last but not least, the binding of CRTC2 to a transcriptional enhancer that interacts with the Cebpd promoter was dramatically decreased upon JAK inhibition. Our data reveal the existence of an unusual functional interplay between STATs and CREB at the onset of adipogenesis through shared CRTC cofactors

    Excessive Food Intake, Obesity and Inflammation Process in Zucker fa/fa Rat Pancreatic Islets

    Get PDF
    Inappropriate food intake-related obesity and more importantly, visceral adiposity, are major risk factors for the onset of type 2 diabetes. Evidence is emerging that nutriment-induced β-cell dysfunction could be related to indirect induction of a state of low grade inflammation. Our aim was to study whether hyperphagia associated obesity could promote an inflammatory response in pancreatic islets leading to ß-cell dysfunction. In the hyperphagic obese insulin resistant male Zucker rat, we measured the level of circulating pro-inflammatory cytokines and estimated their production as well as the expression of their receptors in pancreatic tissue and β-cells. Our main findings concern intra-islet pro-inflammatory cytokines from fa/fa rats: IL-1β, IL-6 and TNFα expressions were increased; IL-1R1 was also over-expressed with a cellular redistribution also observed for IL-6R. To get insight into the mechanisms involved in phenotypic alterations, abArrays were used to determine the expression profile of proteins implicated in different membrane receptors signaling, apoptosis and cell cycle pathways. Despite JNK overexpression, cell viability was unaffected probably because of decreases in cleaved caspase3 as well as in SMAC/DIABLO and APP, involved in the induction and amplification of apoptosis. Concerning β-cell proliferation, decreases in important cell cycle regulators (Cyclin D1, p35) and increased expression of SMAD4 probably contribute to counteract and restrain hyperplasia in fa/fa rat islets. Finally and probably as a result of IL-1β and IL-1R1 increased expressions with sub-cellular redistribution of the receptor, islets from fa/fa rats were found more sensitive to both stimulating and inhibitory concentrations of the cytokine; this confers some physiopathological relevance to a possible autocrine regulation of β-cell function by IL-1β. These results support the hypothesis that pancreatic islets from prediabetic fa/fa rats undergo an inflammatory process. That the latter could contribute to β-cell hyperactivity/proliferation and possibly lead to progressive β-cell failure in these animals, deserves further investigations
    • …
    corecore