Technical University of Denmark

Determination of plutonium in environmental samples by controlled valence in anion exchange

Chen, Qing Jiang; Aarkrog, A.; Nielsen, Sven Poul; Dahlgaard, H.; Nies, H.; Yu, Yixuan; Mandrup, K.

Publication date: 1991

Document Version Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

Chen, Q. J., Áarkrog, A., Nielsen, S. P., Dahlgaard, H., Nies, H., Yu, Y., & Mandrup, K. (1991). Determination of plutonium in environmental samples by controlled valence in anion exchange. (Risø-M; No. 2856).

DTU Library Technical Information Center of Denmark

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. DK9100042

Risø-M-2856

Determination of Plutonium in Environmental Samples by Controlled Valence in Anion Exchange

Qingjiang Chen, Asker Aarkrog, Sven P. Nielsen, Henning Dahlgaard, H. Nies, Yixuan Yu, K. Mandrup

Risø National Laboratory, Roskilde, Denmark February 1991

1

ł

RISØ-M-2856

DETERMINATION OF PLUTONIUM IN ENVIRONMENTAL SAMPLES BY CONTROLLED VALENCE IN ANION EXCHANGE

Qingjiang Chen*, Asker Aarkrog, Sven P. Nielsen, Henning Dahlgaard, H. Nies**, Yixuan Yu*, K. Mandrup

*Institute of Atomic Energy, Beijing, China
** Deutsches Hydrographisches Institut, Hamburg, Germany

Abstract. The method was successfully used for collecting ^{239,240}Pu from 200 litres seawater by coprecipitation with 16 g FeSO, 7H,0 under reducing conditions without filtering. The plutonium is leached by concentrated HNO₃ + HCl from the coprecipitate and the solid particles. The precipitate is heated at 400°C and digested in aqua regia. Na, SO, and NaNO, have been applied to obtain Pu^{+4} valence in 0.5-1 N HNO₃ for different samples. Plutonium and thorium are coabsorbed on anionic resin from 8 N HNO₃. The column is eluated with 8 N HNO₃ containing fresh NaNO, to keep Pu⁺⁴ valence for uranium decontamination. The system of the column is changed from 8 N HNO₃ to concentrated HCl with 50 ml conc. HCl containing a few milligram NaNO,. Further decontamination of thorium was achieved by eluation with concentrated HCl instead of 9 N HCl. The plutonium is successfully stripped by H₂O, NaOH, 2 N HNO₃ and 0.5 N HNO₃ containing 0.01 M NaNO3. The chemical yield of plutonium for a 200 litres-seawater sample is 60-80%. The resolution of the electroplated thin source is very good.

February 1991 Risø National Laboratory; DK-4000 Roskilde, Denmark

ISBN 87-550-1620-0 ISSN 0418-6435

Grafisk Service, Risø 1991

3/4

TABLE OF CONTENTS

1. INTRODUCTION	5
2. FLOW SHEET OF THE PROCEDURE FOR 200 LITRES SEAWATER	5
3. RESULTS AND DISCUSSION	7
4. CONCLUSION	14
APPENDIX 1	15
REFERENCES	17

1. INTRODUCTION

Previous works^{1.2} have demonstrated that an anion exchange separation of plutonium could be used for routine analysis of environmental samples. The procedures based on the absorption of anionic complexes of plutonium from nitric and hydrochloric acid media have been reviewed¹. The $Pu(NO_1)_{5}^{-2}$ and $PuCl_{5}^{-2}$ are absorbed on the anionic exchange. However, the plutonium valence $(Pu^{+3,4,5,6})$ is variable. The Pu^{*3} is easily oxidized to Pu^{*4} with NaNO, and H₂O, while Pu^{+5,6} are reduced to Pu⁺⁴ with NaNO₂, but the reaction is slow and incomplete. Especially for large volumes seawater samples with organic material and impurities, we found that it was very difficult to control the plutonium valence with NaNO, and H,O,. The chemical yield of plutonium was low too. We further observed a thorium contamination in case of large volume seawater eluted by 9 N HCl. Hence it was important to develop a new method to control the plutonium valence and improve the thorium decontamination for large volume seawater and environmental samples.

2. FLOW SHEET OF THE PROCEDURE FOR 200 LITRES SEAWATER

On board the ship:

- 1 1) Acidify 200 litres seawater to pH about 2 with 200 ml concentrated HCl.
 - 2) Add 16 g FeSO₄.7 H_2O_7 ²⁴²Pu and 200 g Na₂S₂O₅. Stir by air bubbling for 1 h to reduce all Pu valences to Pu⁺³.
 - 3) Basify the 200 litres seawater to pH = 8.5-9 with diluted NaOH (0.5-1 N) to precipitate $Fe(OH)_2$. The diluted NaOH is added with a shower to reduce formation of Ca(OH)₂ and Mg(OH)₂.
 - 4) Let stay for 5 h or overnight. Siphon off the supernatant liquid to get about 5 litres of $Fe(OH)_2$ slurry.
 - 5) Acidify the solution to about 0.1 N HCl with concentrated HCl (10 ml HCl/litre).
 - 6) Transfer the sample to laboratory for analysis.

In the laboratory:

- Add Na₂S₂O₅ (2 g/litre) to the sample solution. Let stay for 1 h.
 - 2) Slowly add diluted NaOH with a small shower to pH = 8.5 to prevent formation of Mg(OH)₂ and Ca(OH)₂. Let stay for 30 min.
 - 3) Siphon off the supernatant liquid. Filter the precipitate with glass filter paper AG/A. Discard the solution.
 - 4) Dissolve the $Fe(OH)_z$ with 100 ml conc. HCl and 100 ml conc. HNO₃.
 - 5) Filter the solution through glass filter paper AG/A into a 500 ml beaker. Evaporate to complete dryness.
- 3. 1) Heat at 400°C for 1 h. Let stay for cooling. Add 120 ml aqua regia to dissolve. Cover the beaker with a glass disc, heat for 1 h.
 - 2) Evaporate to dryness. <u>Repeat</u> step 1). Filter the solution. Wash the precipitate with 100 ml 8 N HNO₃. Discard the precipitate.
 - 3) Evaporate to about 7 ml. Dilute to 150 ml. The acid is about 0.5-1 N HNO₃.
 - 4) Add 3 g Na_2SO_3 . Let stay for 20 min. The plutonium is reduced to Pu^{+3} .
 - 5) Add 3 g NaNO₂. Let stay for 10 min. The Pu^{+3} is oxidized to Pu^{+4} .
 - 6) Acidify the solution to 8 N HNO_3 with 165 ml concentrated HNO_3
- 4. 1) Add the solution to a column (10 x 2.1 cm AG $1-X_4$, 100-200 mesh) which is equilibrated with 50 ml 8 N HNO₃ + 1 g K₂S₂O₈ and 100 ml 8 N HNO₃ + 0.5 g NaNO₂ (fresh). The flow rate is about 3 ml/min.
 - 2) Wash the column with 350 ml 8 N HNO_3 (10c.v) + 1 g $NaNO_2$ (fresh).
 - 3) Wash with 50 ml concentrated HCl which is saturated with 100 mg $NaNO_2$ (fresh).
 - 4) Wash with 300 ml concentrated HCl.

- 5. 1) Strip with: 30 ml H_2O , 20 ml 0.3 NaOH, 30 ml H_2O , 20 ml 2 N HNO₃, 200 ml 0.5 N HNO₃ containing 0.01 M NaNO₃. Evaporate to dryness.
 - 2) Dissolve the precipitate with 10 ml 0.7 N HNO₃. Add 300 mg Na₂SO₃. Stir and let stay for 15 min. Add 300 mg NaNO₂. Let stay for 10 min. Add 12 ml conc. HNO₃.
 - 3) Make a column (7 x 0.8 cm) Ag 1-X, 100-200 mesh. Eluate the column with 20 ml 8 N HNO₃ containing 3 mg/ml NaNO₂ (fresh).
 - 4) The solution is passed through the column. The flow rate is about 1 ml/min.
 - 5) Wash the column with 20 ml 8 N HNO₃ containing 3 mg/ml NaNO₂.
 - 6) Strip with: 4 ml H₂O, 4 ml 0.3 N NaOH, 4 ml H₂O, 4 ml 2 N HNO₃, 20 ml 0.5 N HNO₃ containing 0.3 M NaNO₃.
 - 7) Add 0.3 ml conc. H_2SO_4 . Evaporate to dryness.
- Dissolve the precipitate with 0.5 N H₂SO₄. Wash the beaker with 9 ml 0.5 N H₂SO₄. Combine these solutions into the electrodeposition cell.
 - 2) Adjust the solution to pH = 2.2 for electrodeposition.
 - 3) The current is 0.6 A/cm^2 . The time is 6 h. Cool the cell with water.
 - 4) Cover the surface of the source with VYNS thin film (10-15 μ g/cm²).

3. RESULTS AND DISCUSSION

Seawater samples as large as 200 litres are collected with $Fe(OH)_2$ coprecipitate at pH = 8.5-9 in a reducing system. The $Fe(OH)_2$ is dissolved in conc. HCl and conc. HNO₃. The plutonium is dissolved and leached from possible plankton and solid particles present in the solution. The diluted NaOH (0.5-1 N) is added with a shower to reduce the formation of Ca(OH)₂ and Mg(OH)₂. This is of benefit for the plutonium purification. The sample is heated to 400°C for one hour and digested with aqua

regia to destroy the organic material, which may interfere when controlling the valency of plutonium. By the heating, decontamination for polonium is furthermore obained.

 $\frac{Na_2SO_3 - NaNO_2}{Na_2SO_3}$ and $NaNO_2$

are applied in preparation of Pu^{44} . The plutonium valences ($Pu^{44,5,6}$) are reduced to Pu^{43} by Na_2SO_3 and then, the Pu^{43} is oxidized to Pu^{44} by $NaNO_2$ in 0.5-1 N HNO_3. Both reactions are fast and nearly quantitative. A high proportion of Pu^{44} is obtained. Table 1 shows the chemical yield of plutonium using redox-systems of $NaNO_2-NaNO_2$ and $Na_2SO_3-NaNO_2$ respectively.

<u>Table 1</u>. Comparing the chemical yield of plutonium by redoxsystems of $NaNO_2$ -NaNO₂ and Na_2SO_3 -NaNO₂ respectively.

No.	Seawater litres	Reducing agent	Oxidizing agent	Chemical yield ²⁴² Pu, %
165	50	NaNO2	NaNO ₂	24.0
197	200	Na ₂ SO ₃	NaNO ₂	88.6
198	200	Na ₂ SO ₃	NaNO ₂	83.6

When NaNO₂ and H_2O_2 are applied in preparation of Pu^{4} , the Pu^{4} is rapidly oxidized by NaNO₂ and H_2O_2 ; but the $Pu^{45.6}$ are rather slowly reduced to Pu^{44} by NaNO₂ and H_2O_2 . When the H_2O_2 is used to prepare Pu^{44} , the decontamination for uranium is furthermore inefficient. This is shown in Table 2.

Table 2. Comparing uranium decontamination in seawater using H_2O_2 and NaNO₂ respectively.

No.	Seawater litres	Agent	238U	(Bg/m ³)	²³⁴ U (Bq/m ³⁾
165	40	5 ml 30% H ₂ O ₂		8.1	9.3
168	50	2 g NaNO_2		0.059	0.63

The anion exchange column is equilibrated with 8 N HNO_3 containing $K_2S_2O_8$ and 8 N HNO_3 containing fresh NaNO₂ to clean for any impurity in the anion ion exchange in order to prevent any interference.

During washing of the column with 8 N HNO₃ for uranium decontamination, the chem. yield of plutonium is often lost by a change of plutonium valency. In order to keep Pu^{**} , the eluate of 8 N HNO₃ containing fresh NaNO₂ is used. When the system is changed from HNO₃ to HCl, the plutonium valence is changed by oxidation of the mixture of HNO₃ + HCl. Therefore, 50 ml conc. HCl containing a few milligram NaNO₂ is used as eluate to prevent the change of the plutonium valence. In Table 3 the chemical yields of plutonium samples are compared when the system is changed to HCl with and without the addition of NaNO₂.

<u>Table 3.</u> Comparing the chemical yield of plutonium by changing the system using 50 ml conc. HCl + few milligram NaNO₂ and 50 ml conc. <math>HCl only.

No.	Volume litres	Agent	Chemical yield ²⁴² Pu, %
197	200	50 ml conc. HCl a few milligram NaNO ₂	88.6
198	200	97	83.6
200	200	50 ml conc. HCl	57.5

Stripping plutonium

We think there are two problems in the plutonium stripping with low acid concentration, i.e. micro-absorption of plutonium and low chemical yield of plutonium. In this work, the plutonium is successfully stripped with H_2O , NaOH, 2 N HNO₃ and 0.5 N HNO₃ containing 0.03 M NaNO₃. When Pu is stripped with NaOH, the plutonium is hydrolyzed to Pu(OH)_n leaving the anion exchange resin. Then the Pu(OH)_n is dissolved in 2 N HNO₃ and further stripped with 0.5 N HNO₃ containing 0.03 M NaNO₃ as a scavenger to prevent the micro plutonium absorption. Table 4 shows the stripping efficiency between 500 ml 0.5 N HNO₃ + 0.03 M NaNO₃ (low acid concentration) and H_2O , NaOH, 2 N HNO₃, 200 ml 0.5 N HNO₃ + 0.03 M NaNO₃.

<u>Table 4</u>. The chemical yield of plutonium at the different stripping condition between 300 ml 0.5 N HNO₃ + 0.03 M NaNO₃ (low acid concentration) and H_2O , NaOH, 2 N HNO₃, 200 ml 0.5 N HNO₃ + 0.03 M NaNO₃.

No.	Seawater	Stripping	Chemical	yield
	litres	condition	²⁴² Pu,	\$
175	50	300 ml 0.5 N HNO ₃ + 0.03 M NaNO ₃	46.9	
176	200	300 ml 0.5 N HNO ₃ + 0.03 M NaNO ₃	45.0	
203	200	H ₂ O, NaOH, 2 N HNO ₃ , 200 ml 0.5 N HNO ₃ + 0.03 M NaNO ₃	79.5	

Before electrodeposition the sample is heated at 400°C and dissolved in aqua regia for destroying the organic material to get a thin source and for polonium decontamination.

Table 5 and 6 show a comparison of the results obtained by the previous used method and the present one, and Figs. 1 and 2 show sample spectra from the two tables.

Sample no.	Volume (m ³)	²⁴² Pu-yield (%)	²²⁸ Th (µBq)	²³⁹ Pu (mBq m ⁻³)	²³⁸ Pu (mBq m ⁻³)
870075	0.2	7.6	nd	17.1±19 \$	nd
870076	0.2	12.6	20±43\$	13.0±16%	nd
870077	0.2	9.4	nd	16.4±19%	nd
870078	0.2	7.6	15±33 %	7.5±30%	nd
870079	0.2	7.3	76±15 %	nd	nd
870080	1.0	41.4	228± 9%	12.5± 7%	0.5±25%
870081	1.8	3.7	nd	12.0±22%	nd
870082	1.8	24.8	nd	15.0± 7%	0.7±16%
870083	1.8	7.2	149±15¥	15.3±13 %	nd

<u>Table 5.</u> Plutonium analyses of seawater samples from the North Sea using the old radiochemical procedure. (nd = not detected).

<u>Table 6.</u> Plutonium analyses of seawater samples from the Danish Waters (Hessel@) using the new radiochemical procedure.

Sample no.	Volume (m ³)	²⁴² Pu-Yield (%)	²²⁸ Th (µBq)	²³⁵ Pu (mBg m ⁻³)	²³⁴ Pu (mBg m ⁻³)
890197	0.2	88.6	nd	7.4± 8%	0.7±35%
890198	0.2	83.6	nd	7.2± 8%	1.7±17%
890201	0.2	72.5	nd	9.0± 8%	2.0±17%
890202	0.2	76.1	-	-	-
890203	0.2	81.9	-	-	-
890205	0.2	72.2	-	+	-

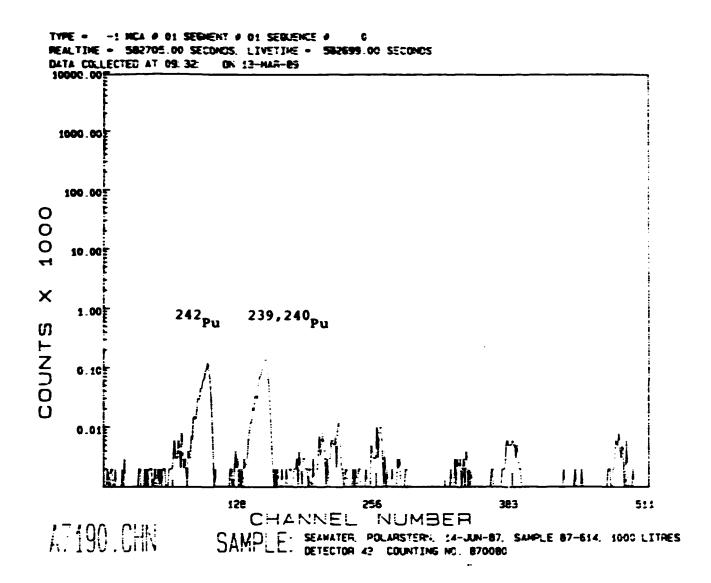


Fig. 1. Sample spectrum (no. 870080) showing thorium contamination (²²⁶Th and daughters).

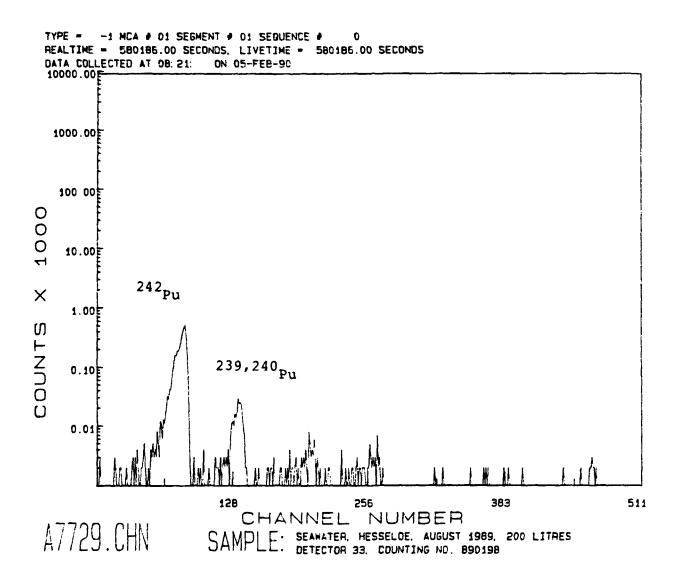


Fig. 2. Sample spectrum (No. 890198) showing no thorium contamination.

4. CONCLUSION

- 1. Na_2SO_3 and $NaNO_2$ are successfully applied to prepare Pu^{+4} .
- 2. The plutonium is stripped from anion ion exchange by H_2O , NaOH, 2 N HNO₃ and 0.5 N HNO₃ + 0.01 M NaNO₃.
- 3. With the new procedure we have obtained high decontamination factors for uranium and thorium, high chemical yields (60-80%) for plutonium and high alpha energy resolutions.

APPENDIX 1

Purification of plutonium from disc

- 1. Put the disc in a 50 ml beaker. Add about 0.5 ml 8 M HNO_3 . Let stand for 1 hour to dissolve. Wash the disc with conc. HCl several times.
- 2. Wash the disc with 1 .. HNO3 until clean. Discard the disc.
- 3. Add 1 ml 1 M NaNO₃. Evaporate to dryness. Add 3 ml conc. HNO₃ and 3 ml HCl. Heat to dryness.
- 4. Dissolve with 10 ml 0.7 N HNO₃. Heat for a few min.
- 5. Add 300 mg Na_2SO_3 . Stir to dissolve. Let stand for 15 min. The plutonium is reduced to Pu^{+3} valence. (30 mg/ml Na_2SO_3).
- 6. Add 3C0 mg NaNO₂ (30 mg/ml). Stir to uniformity. The plutonium is oxidized to Pu^{+4} . Let stand for 10 min.
- 7. Add 12 ml conc. HNO3 to get about 8 N HNO3.
- 8. Make a column (7x0.8 cm) AG 1-X, 100-200 mesh. Eluate the column with 20 ml 8 N HNO₃ containing 3 mg/ml NaNO₃ (fresh).
- 9. Add solution to column (0.5 ml/min).
- 10. Wash the column with 20 ml 8 N HNO3 containing 3 mg/ml NaNO2.
- 11. Strip with 4 ml H₂O, 4 ml O.3 N NaOH, 4 ml H₂O, 4 ml 2 N HNO₃ and 20 ml O.5 N HNO₃ + 0.01 M NaNO₃.
- 12. Add 0.3 ml conc. H_2SO_4 . Evaporate to dryness. Add 3 ml conc. HNO₃ and 3 ml conc. HCl. Evaporate to dryness.
- 13. Dissolve with 5 ml 0.5 N H_2SO_4 . Wash the beaker three times with 0.5 N H_2SO_4 . Each time with 3 ml (transfer to electrodeposition cell). Adjust the pH = 2.2 for electrodeposition.
- 14. The current is 0.6 A/cm^2 . The time is 6 h. Cool the cell with water.
- 15. Cover the surface of source with VYNS thin film $(10-15 \ \mu g/cm_2)$

The results of the purification are shown in table 7.

Sample no.	Volume (m ³)	²⁴² Pu-Yield (%)	²²⁸ Th (µBq)	²³⁹ Pu (mBq m ⁻³)	²³⁸ Pu (mBq m ⁻³)
890197	0.2	64.5	nd	7.0±10%	0.88±48%
890198	0.2	65.0	21±37%	7.3±8.9%	1.4±23%
890200	0.2	53.9	19±32%	7.2±9.6%	0.8±38%
8900Kl	0.2	58.5	nd	6.4±12.1%	nd
890k 2	0.2	66.5	17±43%	8.1±8.8%	0.7±36%

Table 7. After purification, the plutonium chemical yield.

nd = not detected

References

- 1. G.H. Coleman. "Radiochemistry of plutonium" National Academy of Sciences, Nuclear Science Series. NAS-NS (1965).
- 2. N.A. Talvitie, Radiochemical Determination of Plutonium in Environmental and Biological Samples by Ion Exchange. Analytical Chemistry. Vol. 43, No. 13 November 1971.

Riso National Laboratory

Riso – M – 2856

Title and author(s)	Date February 1991
DETERMINATION OF PLUTONIUM IN ENVIRON-	
MENTAL SAMPLES BY CONTROLLED VALENCE IN ANION EXCHANGE	Department or group Section of Ecology
Qingjiang Chen*, Asker Aaarkrog, Sven P. Nielsen, Henning Dahlgaard, H.Nies**, Yixuan Yu*, K. Mandrup	Groups own registration number(s)
Institute of Atomic Energy, Beijing, China	
<pre>** Deutsches Hydrographisches Institut,</pre>	Project/contract no.
Hamburg, Germany	
Pages] 7 Tables 7 Illustrations 2 References 2	ISBN 87-550-1620-0

Abstract (Max. 2000 char.)

Abstract. The method was successfully used for collecting ^{239,240}Pu from 200 litres seawater by coprecipitation with 16 g FeSO₄.7H,0 under reducing conditions without filtering. The plutonium is leached by concentrated HNO₃ + HCl from the coprecipitate and the solid particles. The precipitate is heated at 400°C and digested in aqua regia. Na,SO, and NaNO, have been applied to obtain Pu^{+4} valence in 0.5-1 N HNO₂ for different samples. Plutonium and thorium are coabsorbed on anionic resin from 8 N HNO3. The column is eluated with 8 N HNO3 containing fresh NaNO, to keep Pu⁺⁴ valence for uranium decontamination. The system of the column is changed from 8 N HNO₃ to concentrated HCl with 50 ml conc. HCl containing a few milligram NaNO2. Further decontamination of thorium was achieved by eluation with concentrated KCl instead of 9 N HCl. The plutonium is successfully stripped by H₂O, NaOH, 2 N HNO₃ and 0.5 N HNO₃ containing 0.01 M NaNO3. The chemical yield of plutonium for a 200 litres-seawater sample is 60-80%. The resolution of the electronlated thin source is very good.

Descriptors - INIS

ANIONS; CHEMICAL REACTION YIELD; COPRECIPITATION; DECONTAMINATION; HYDROCHLORIC ACID; ION EXCHANGE; IRON SULFATES; LEACHING; NITRIC ACID; PLUTONIUM 239; PLUTONIUM 240; PLUTONIUM IONS; SAMPLING; SEAWATER; SODIUM HYDROXIDES; SODIUM NITRATES; SODIUM SULFATES; THORIUM, URANIUM; VALENCE

Available on request from Rise Library, Rise National Laboratory, (Rise Bibliotek, Forskningscenter Rise), P.O. Box 49, DK-4000 Roskilde, Denmark. Telephone + 45 42 37 12 12, ext. 2268/2269. Telex: 43116, Telefax: + 45 46 75 56 27

Available on exchange from: Risø Library Risø National Laboratory, P.O. Box 49, DK-4000 Roskilde, Denmark Phone + 45 42 37 12 12, ext. 2268/2269 Telex 43116, Telefax + 45 46 75 56 27

I I

¥

ISBN 87-550-1620-0 ISSN 0418-6435

I.