135 research outputs found

    The effectiveness of neuromuscular warm-up strategies, that require no additional equipment, for preventing lower limb injuries during sports participation: a systematic review

    Get PDF
    PMCID: PMC3408383The electronic version of this article is the complete one and can be found online at: http://www.biomedcentral.com/1741-7015/10/75. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

    Effects of acute fatigue on the volitional and magnetically-evoked electromechanical delay of the knee flexors in males and females

    Get PDF
    Neuromuscular performance capabilities, including those measured by evoked responses, may be adversely affected by fatigue; however, the capability of the neuromuscular system to initiate muscle force rapidly under these circumstances is yet to be established. Sex-differences in the acute responses of neuromuscular performance to exercise stress may be linked to evidence that females are much more vulnerable to ACL injury than males. Optimal functioning of the knee flexors is paramount to the dynamic stabilisation of the knee joint, therefore the aim of this investigation was to examine the effects of acute maximal intensity fatiguing exercise on the voluntary and magnetically-evoked electromechanical delay in the knee flexors of males and females. Knee flexor volitional and magnetically-evoked neuromuscular performance was assessed in seven male and nine females prior to and immediately after: (i) an intervention condition comprising a fatigue trial of 30-seconds maximal static exercise of the knee flexors, (ii) a control condition consisting of no exercise. The results showed that the fatigue intervention was associated with a substantive reduction in volitional peak force (PFV) that was greater in males compared to females (15.0%, 10.2%, respectively, p < 0.01) and impairment to volitional electromechanical delay (EMDV) in females exclusively (19.3%, p < 0.05). Similar improvements in magnetically-evoked electromechanical delay in males and females following fatigue (21%, p < 0.001), however, may suggest a vital facilitatory mechanism to overcome the effects of impaired voluntary capabilities, and a faster neuromuscular response that can be deployed during critical times to protect the joint system

    MR imaging of overuse injuries in the skeletally immature gymnast: spectrum of soft-tissue and osseous lesions in the hand and wrist

    Get PDF
    In the pediatric gymnast, stress-related physeal injuries have been well described with characteristic imaging findings. However, a spectrum of overuse injuries, some rarely reported in the literature, can be encountered in the gymnast’s hand and wrist. To demonstrate the MR appearance of a spectrum of overuse injuries in the skeletally immature wrist and hand of pediatric gymnasts. A total of 125 MR exams of the hand and wrist in skeletally immature children were performed at our institution during a 2-year period. Clinical histories were reviewed for gymnastics participation. MR studies of that subpopulation were reviewed and abnormalities tabulated. Of the MR studies reviewed, ten gymnasts were identified, all girls age 12–16 years (mean age 14.2 years) who presented with wrist or hand pain. Three of these children had bilateral MR exams. Abnormalities included chronic physeal injuries in three children. Two girls exhibited focal lunate osteochondral defects. Triangular fibrocartilage tears were present in three girls, one of whom had a scapholunate ligament tear. Two girls manifested metacarpal head flattening and necrosis. A variety of soft-tissue and osseous lesions can be encountered in the skeletally immature gymnast. Familiarity with these stress-related injuries is important for accurate diagnosis

    Spontaneous hyaline cartilage regeneration can be induced in an osteochondral defect created in the femoral condyle using a novel double-network hydrogel

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Functional repair of articular osteochondral defects remains a major challenge not only in the field of knee surgery but also in tissue regeneration medicine. The purpose is to clarify whether the spontaneous hyaline cartilage regeneration can be induced in a large osteochondral defect created in the femoral condyle by means of implanting a novel double-network (DN) gel at the bottom of the defect.</p> <p>Methods</p> <p>Twenty-five mature rabbits were used in this study. In the bilateral knees of each animal, we created an osteochondral defect having a diameter of 2.4-mm in the medial condyle. Then, in 21 rabbits, we implanted a DN gel plug into a right knee defect so that a vacant space of 1.5-mm depth (in Group I), 2.5-mm depth (in Group II), or 3.5-mm depth (in Group III) was left. In the left knee, we did not apply any treatment to the defect to obtain the control data. All the rabbits were sacrificed at 4 weeks, and the gross and histological evaluations were performed. The remaining 4 rabbits underwent the same treatment as used in Group II, and real-time PCR analysis was performed at 4 weeks.</p> <p>Results</p> <p>The defect in Group II was filled with a sufficient volume of the hyaline cartilage tissue rich in proteoglycan and type-2 collagen. The Wayne's gross appearance and histology scores showed that Group II was significantly greater than Group I, III, and Control (p < 0.012). The relative expression level of type-2 collagen, aggrecan, and SOX9 mRNAs was significantly greater in Group II than in the control group (p < 0.023).</p> <p>Conclusions</p> <p>This study demonstrated that spontaneous hyaline cartilage regeneration can be induced <it>in vivo </it>in an osteochondral defect created in the femoral condyle by means of implanting the DN gel plug at the bottom of the defect so that an approximately 2-mm deep vacant space was intentionally left in the defect. This fact has prompted us to propose an innovative strategy without cell culture to repair osteochondral lesions in the femoral condyle.</p

    Effects of jump and balance training on knee kinematics and electromyography of female basketball athletes during a single limb drop landing: pre-post intervention study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Some research studies have investigated the effects of anterior cruciate ligament (ACL) injury prevention programs on knee kinematics during landing tasks; however the results were different among the studies. Even though tibial rotation is usually observed at the time of ACL injury, the effects of training programs for knee kinematics in the horizontal plane have not yet been analyzed. The purpose of this study was to determine the effects of a jump and balance training program on knee kinematics including tibial rotation as well as on electromyography of the quadriceps and hamstrings in female athletes.</p> <p>Methods</p> <p>Eight female basketball athletes participated in the experiment. All subjects performed a single limb landing at three different times: the initial test, five weeks later, and one week after completing training. The jump and balance training program lasted for five weeks. Knee kinematics and simultaneous electromyography of the rectus femoris and Hamstrings before training were compared with those measured after completing the training program.</p> <p>Results</p> <p>After training, regarding the position of the knee at foot contact, the knee flexion angle for the Post-training trial (mean (SE): 24.4 (2.1) deg) was significantly larger than that for the Pre-training trial (19.3 (2.5) deg) (p < 0.01). The absolute change during landing in knee flexion for the Post-training trial (40.2 (1.9) deg) was significantly larger than that for the Pre-training trial (34.3 (2.5) deg) (p < 0.001). Tibial rotation and the knee varus/valgus angle were not significantly different after training. A significant increase was also found in the activity of the hamstrings 50 ms before foot contact (p < 0.05).</p> <p>Conclusions</p> <p>The jump and balance training program successfully increased knee flexion and hamstring activity of female athletes during landing, and has the possibility of producing partial effects to avoid the characteristic knee position observed in ACL injury, thereby preventing injury. However, the expected changes in frontal and transverse kinematics of the knee were not observed.</p

    Knee kinematics and kinetics in former soccer players with a 16-year-old ACL injury – the effects of twelve weeks of knee-specific training

    Get PDF
    BACKGROUND: Training of neuromuscular control has become increasingly important and plays a major role in rehabilitation of subjects with an injury to the anterior cruciate ligament (ACL). Little is known, however, of the influence of this training on knee stiffness during loading. Increased knee stiffness occurs as a loading strategy of ACL-injured subjects and is associated with increased joint contact forces. Increased or altered joint loads contribute to the development of osteoarthritis. The aim of the study was to determine if knee stiffness, defined by changes in knee kinetics and kinematics of gait, step activity and cross-over hop could be reduced through a knee-specific 12-week training programme. METHODS: A 3-dimensional motion analysis system (VICON) and a force plate (AMTI) were used to calculate knee kinetics and kinematics before and after 12 weeks of knee-specific training in 12 males recruited from a cohort with ACL injury 16 years earlier. Twelve uninjured males matched for age, sex, BMI and activity level served as a reference group. Self-reported patient-relevant data were obtained by the KOOS questionnaire. RESULTS: There were no significant changes in knee stiffness during gait and step activity after training. For the cross-over hop, increased peak knee flexion during landing (from 44 to 48 degrees, p = 0.031) and increased internal knee extensor moment (1.28 to 1.55 Nm/kg, p = 0.017) were seen after training, indicating reduced knee stiffness. The KOOS sport and recreation score improved from 70 to 77 (p = 0.005) and was significantly correlated with the changes in knee flexion during landing for the cross-over hop (r = 0.6, p = 0.039). CONCLUSION: Knee-specific training improved lower extremity kinetics and kinematics, indicating reduced knee stiffness during demanding hop activity. Self-reported sport and recreational function correlated positively with the biomechanical changes supporting a clinical importance of the findings. Further studies are needed to confirm these results in women and in other ACL injured populations

    ACL injury prevention, more effective with a different way of motor learning?

    Get PDF
    What happens to the transference of learning proper jump-landing technique in isolation when an individual is expected to perform at a competitive level yet tries to maintain proper jump-landing technique? This is the key question for researchers, physical therapists, athletic trainers and coaches involved in ACL injury prevention in athletes. The need for ACL injury prevention is clear, however, in spite of these ongoing initiatives and reported early successes, ACL injury rates and the associated gender disparity have not diminished. One problem could be the difficulties with the measurements of injury rates and the difficulties with the implementation of thorough large scale injury prevention programs. A second issue could be the transition from conscious awareness during training sessions on technique in the laboratory to unexpected and automatic movements during a training or game involves complicated motor control adaptations. The purpose of this paper is to highlight the issue of motor learning in relation to ACL injury prevention and to post suggestions for future research. ACL injury prevention programs addressing explicit rules regarding desired landing positions by emphasizing proper alignment of the hip, knee, and ankle are reported in the literature. This may very well be a sensible way, but the use of explicit strategies may be less suitable for the acquisition of the control of complex motor skills (Maxwell et al. J Sports Sci 18:111-120, 2000). Sufficient literature on motor learning and it variations point in that direction
    corecore