2,798 research outputs found

    BDDC and FETI-DP under Minimalist Assumptions

    Full text link
    The FETI-DP, BDDC and P-FETI-DP preconditioners are derived in a particulary simple abstract form. It is shown that their properties can be obtained from only on a very small set of algebraic assumptions. The presentation is purely algebraic and it does not use any particular definition of method components, such as substructures and coarse degrees of freedom. It is then shown that P-FETI-DP and BDDC are in fact the same. The FETI-DP and the BDDC preconditioned operators are of the same algebraic form, and the standard condition number bound carries over to arbitrary abstract operators of this form. The equality of eigenvalues of BDDC and FETI-DP also holds in the minimalist abstract setting. The abstract framework is explained on a standard substructuring example.Comment: 11 pages, 1 figure, also available at http://www-math.cudenver.edu/ccm/reports

    Radiative coupling and weak lasing of exciton-polariton condensates

    Full text link
    In spite of having finite life-time exciton-polaritons in microcavities are known to condense at strong enough pumping of the reservoir. We present an analytical theory of such Bose-condensates on a set of localized one-particle states: condensation centers. To understand physics of these arrays one has to supplement the Josephson coupling by the radiative coupling caused by the interference of the light emitted by different centers. Combination of these couplings with the one-site interaction between the bosons leads to a rich nonlinear dynamics. In particular, a new regime of radiation appears. We call it weak lasing: the centers have macroscopic occupations and radiate coherently, but the coupling alone is sufficient for stabilization. The system can have several stable states and switch between them. Moreover, the time reversal symmetry in this regime is, as a rule, broken. A number of existing experimental puzzles find natural interpretation in the framework of this theory.Comment: 5 pages, 2 figure

    Signal-to-noise ratio of Gaussian-state ghost imaging

    Full text link
    The signal-to-noise ratios (SNRs) of three Gaussian-state ghost imaging configurations--distinguished by the nature of their light sources--are derived. Two use classical-state light, specifically a joint signal-reference field state that has either the maximum phase-insensitive or the maximum phase-sensitive cross correlation consistent with having a proper PP representation. The third uses nonclassical light, in particular an entangled signal-reference field state with the maximum phase-sensitive cross correlation permitted by quantum mechanics. Analytic SNR expressions are developed for the near-field and far-field regimes, within which simple asymptotic approximations are presented for low-brightness and high-brightness sources. A high-brightness thermal-state (classical phase-insensitive state) source will typically achieve a higher SNR than a biphoton-state (low-brightness, low-flux limit of the entangled-state) source, when all other system parameters are equal for the two systems. With high efficiency photon-number resolving detectors, a low-brightness, high-flux entangled-state source may achieve a higher SNR than that obtained with a high-brightness thermal-state source.Comment: 12 pages, 4 figures. This version incorporates additional references and a new analysis of the nonclassical case that, for the first time, includes the complete transition to the classical signal-to-noise ratio asymptote at high source brightnes

    Comparison of Gravitational Wave Detector Network Sky Localization Approximations

    Full text link
    Gravitational waves emitted during compact binary coalescences are a promising source for gravitational-wave detector networks. The accuracy with which the location of the source on the sky can be inferred from gravitational wave data is a limiting factor for several potential scientific goals of gravitational-wave astronomy, including multi-messenger observations. Various methods have been used to estimate the ability of a proposed network to localize sources. Here we compare two techniques for predicting the uncertainty of sky localization -- timing triangulation and the Fisher information matrix approximations -- with Bayesian inference on the full, coherent data set. We find that timing triangulation alone tends to over-estimate the uncertainty in sky localization by a median factor of 44 for a set of signals from non-spinning compact object binaries ranging up to a total mass of 20M⊙20 M_\odot, and the over-estimation increases with the mass of the system. We find that average predictions can be brought to better agreement by the inclusion of phase consistency information in timing-triangulation techniques. However, even after corrections, these techniques can yield significantly different results to the full analysis on specific mock signals. Thus, while the approximate techniques may be useful in providing rapid, large scale estimates of network localization capability, the fully coherent Bayesian analysis gives more robust results for individual signals, particularly in the presence of detector noise.Comment: 11 pages, 7 Figure

    Feelings of dual-insecurity among European workers: A multi-level analysis

    Get PDF
    This article analyses European Social Survey data for 22 countries. We assess the relationship between feelings of employment and income insecurity (dual-insecurity) among workers and national flexicurity policies in the areas of lifelong learning, active labour market policy, modern social security systems and flexible and reliable contractual arrangements. We find that dual-insecurity feelings are lower in countries that score better on most flexicurity polices, but these effects are in all cases outweighed by levels of GDP per capita. Thus feelings of insecurity are reduced more by the affluence of a country than by its social policies. However, affluence is strongly correlated with the policy efforts designed to reduce insecurity, especially active labour market policies and life-long learning, two policy areas that are threatened with cuts as a result of austerity

    Decoherence-free preparation of Dicke states of trapped ions by collective stimulated Raman adiabatic passage

    Full text link
    We propose a simple technique for the generation of arbitrary-sized Dicke states in a chain of trapped ions. The method uses global addressing of the entire chain by two pairs of delayed but partially overlapping laser pulses to engineer a collective adiabatic passage along a multi-ion dark state. Our technique, which is a many-particle generalization of stimulated Raman adiabatic passage (STIRAP), is decoherence-free with respect to spontaneous emission and robust against moderate fluctuations in the experimental parameters. Furthermore, because the process is very rapid, the effects of heating are almost negligible under realistic experimental conditions. We predict that the overall fidelity of synthesis of a Dicke state involving ten ions sharing two excitations should approach 98% with currently achievable experimental parameters.Comment: 14 pages, 8 figure

    Relativistic Doppler effect in quantum communication

    Get PDF
    When an electromagnetic signal propagates in vacuo, a polarization detector cannot be rigorously perpendicular to the wave vector because of diffraction effects. The vacuum behaves as a noisy channel, even if the detectors are perfect. The ``noise'' can however be reduced and nearly cancelled by a relative motion of the observer toward the source. The standard definition of a reduced density matrix fails for photon polarization, because the transversality condition behaves like a superselection rule. We can however define an effective reduced density matrix which corresponds to a restricted class of positive operator-valued measures. There are no pure photon qubits, and no exactly orthogonal qubit states.Comment: 10 pages LaTe

    Experiment K-6-23. Effect of spaceflight on levels and function of immune cells

    Get PDF
    Two different immunology experiments were performed on samples received from rats flown on Cosmos 1887. In the first experiment, rat bone marrow cells were examined in Moscow for their response to colony stimulating factor-M. In the second experiment, rat spleen and bone marrow cells were stained in Moscow with a variety of antibodies directed against cell surface antigenic markers. These cells were preserved and shipped to the United States where they were subjected to analysis on a flow cytometer. The results of the studies indicate that bone marrow cells from flown rats showed a decreased response to colony stimulating factor than did bone marrow cells from control rats. There was a higher percentage of spleen cells from flown rats staining positively for pan-T-cell, suppressor-T-cell and innate interleukin-2 receptor antigens than from control animals. In addition, a higher percentage of cells that appeared to be part of the myelogenous population of bone marrow cells from flown rats stained positively for surface immunoglobulin than did equivalent cells from control rats

    Parity Effects in Spin Decoherence

    Get PDF
    We demonstrate that decoherence of many-spin systems can drastically differ from decoherence of single-spin systems. The difference originates at the most basic level, being determined by parity of the central system, i.e. by whether the system comprises even or odd number of spin-1/2 entities. Therefore, it is very likely that similar distinction between the central spin systems of even and odd parity is important in many other situations. Our consideration clarifies the physical origin of the unusual two-step decoherence found previously in the two-spin systems.Comment: RevTeX 4, 5 pages, 2 figures; acknowledgments added; replaced with the published version; journal reference adde

    Particle Counting Statistics of Time and Space Dependent Fields

    Get PDF
    The counting statistics give insight into the properties of quantum states of light and other quantum states of matter such as ultracold atoms or electrons. The theoretical description of photon counting was derived in the 1960s and was extended to massive particles more recently. Typically, the interaction between each particle and the detector is assumed to be limited to short time intervals, and the probability of counting particles in one interval is independent of the measurements in previous intervals. There has been some effort to describe particle counting as a continuous measurement, where the detector and the field to be counted interact continuously. However, no general formula applicable to any time and space dependent field has been derived so far. In our work, we derive a fully time and space dependent description of the counting process for linear quantum many-body systems, taking into account the back-action of the detector on the field. We apply our formalism to an expanding Bose-Einstein condensate of ultracold atoms, and show that it describes the process correctly, whereas the standard approach gives unphysical results in some limits. The example illustrates that in certain situations, the back-action of the detector cannot be neglected and has to be included in the description
    • …
    corecore