980 research outputs found

    Higher spin quasinormal modes and one-loop determinants in the BTZ black hole

    Full text link
    We solve the wave equations of arbitrary integer spin fields in the BTZ black hole background and obtain exact expressions for their quasinormal modes. We show that these quasinormal modes precisely agree with the location of the poles of the corresponding two point function in the dual conformal field theory as predicted by the AdS/CFT correspondence. We then use these quasinormal modes to construct the one-loop determinant of the higher spin field in the thermal BTZ background. This is shown to agree with that obtained from the corresponding heat kernel constructed recently by group theoretic methods.Comment: 47 page

    Human pericardium graft in the management of bleb's complication performed in childhood: a case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To report a case with hypotony due to late leakage of the filtering bleb performed during childhood and treated surgically using human pericardium graft.</p> <p>Case Presentation</p> <p>A man with hypotony related to bleb's leakage in his right eye was presented. During his childhood trabeculectomy was performed to manage ocular hypertension due to pediatric glaucoma. Biomicroscopy revealed choroidal tissue incarcerated in the sclerectomy under the conjunctiva. Bleb revision was performed. Human pericardium graft was used to cover the sclerectomy and a new bleb with controlled outflow was created. The intraocular pressure (IOP) and Seidel test represent the main outcomes. Intraoperative and postoperative complications were recorded. Fifteen days postoperatively the IOP was of 7 mmHg and the bleb seemed to filter properly. Five months later the IOP was 9 mmHg and no complications were noticed. During the follow up time, the Seidel test was negative.</p> <p>Conclusion</p> <p>We used human pericardium graft with no complications in a case of bleb leakage performed for pediatric glaucoma.</p

    Holographic zero sound at finite temperature in the Sakai-Sugimoto model

    Get PDF
    In this paper, we study the fate of the holographic zero sound mode at finite temperature and non-zero baryon density in the deconfined phase of the Sakai-Sugimoto model of holographic QCD. We establish the existence of such a mode for a wide range of temperatures and investigate the dispersion relation, quasi-normal modes, and spectral functions of the collective excitations in four different regimes, namely, the collisionless quantum, collisionless thermal, and two distinct hydrodynamic regimes. For sufficiently high temperatures, the zero sound completely disappears, and the low energy physics is dominated by an emergent diffusive mode. We compare our findings to Landau-Fermi liquid theory and to other holographic models.Comment: 1+24 pages, 19 figures, PDFTeX, v2: some comments and references added, v3: some clarifications relating to the different regimes added, matches version accepted for publication in JHEP, v4: corrected typo in eq. (3.18

    Nonperturbative studies of supersymmetric matrix quantum mechanics with 4 and 8 supercharges at finite temperature

    Full text link
    We investigate thermodynamic properties of one-dimensional U(N) supersymmetric gauge theories with 4 and 8 supercharges in the planar large-N limit by Monte Carlo calculations. Unlike the 16 supercharge case, the threshold bound state with zero energy is widely believed not to exist in these models. This led A.V. Smilga to conjecture that the internal energy decreases exponentially at low temperature instead of decreasing with a power law. In the 16 supercharge case, the latter behavior was predicted from the dual black 0-brane geometry and confirmed recently by Monte Carlo calculations. Our results for the models with 4 and 8 supercharges indeed support the exponential behavior, revealing a qualitative difference from the 16 supercharge case.Comment: 16 pages, 7 figures, LaTeX2e, minor corrections in section 3, final version accepted in JHE

    From counting to construction of BPS states in N=4 SYM

    Full text link
    We describe a universal element in the group algebra of symmetric groups, whose characters provides the counting of quarter and eighth BPS states at weak coupling in N=4 SYM, refined according to representations of the global symmetry group. A related projector acting on the Hilbert space of the free theory is used to construct the matrix of two-point functions of the states annihilated by the one-loop dilatation operator, at finite N or in the large N limit. The matrix is given simply in terms of Clebsch-Gordan coefficients of symmetric groups and dimensions of U(N) representations. It is expected, by non-renormalization theorems, to contain observables at strong coupling. Using the stringy exclusion principle, we interpret a class of its eigenvalues and eigenvectors in terms of giant gravitons. We also give a formula for the action of the one-loop dilatation operator on the orthogonal basis of the free theory, which is manifestly covariant under the global symmetry.Comment: 41 pages + Appendices, 4 figures; v2 - refs and acknowledgments adde

    Molecular mechanisms of drug resistance in natural Leishmania populations vary with genetic background

    Get PDF
    The evolution of drug-resistance in pathogens is a major global health threat. Elucidating the molecular basis of pathogen drug-resistance has been the focus of many studies but rarely is it known whether a drug-resistance mechanism identified is universal for the studied pathogen; it has seldom been clarified whether drug-resistance mechanisms vary with the pathogen's genotype. Nevertheless this is of critical importance in gaining an understanding of the complexity of this global threat and in underpinning epidemiological surveillance of pathogen drug resistance in the field. This study aimed to assess the molecular and phenotypic heterogeneity that emerges in natural parasite populations under drug treatment pressure. We studied lines of the protozoan parasite Leishmania (L.) donovani with differential susceptibility to antimonial drugs; the lines being derived from clinical isolates belonging to two distinct genetic populations that circulate in the leishmaniasis endemic region of Nepal. Parasite pathways known to be affected by antimonial drugs were characterised on five experimental levels in the lines of the two populations. Characterisation of DNA sequence, gene expression, protein expression and thiol levels revealed a number of molecular features that mark antimonial-resistant parasites in only one of the two populations studied. A final series of in vitro stress phenotyping experiments confirmed this heterogeneity amongst drug-resistant parasites from the two populations. These data provide evidence that the molecular changes associated with antimonial-resistance in natural Leishmania populations depend on the genetic background of the Leishmania population, which has resulted in a divergent set of resistance markers in the Leishmania populations. This heterogeneity of parasite adaptations provides severe challenges for the control of drug resistance in the field and the design of molecular surveillance tools for widespread applicability

    Effects of Bt-cotton on biological properties of Vertisols in central India

    Get PDF
    Growing areas under transgenic crops have created a concern over their possible adverse impact on the soil ecosystem. This study evaluated the effect of Bt-cotton based cropping systems on soil microbial and biochemical activities and their functional relationships with active soil carbon pools in Vertisols of central India (Nagpur, Maharastra, during 2012–2013). Culturable groups of soil microflora, enzymatic activities and active pools of soil carbon were measured under different Bt-cotton based cropping systems (e.g. cotton-soybean, cotton-redgram, cotton-wheat, cotton-vegetables and cotton-fallow). Significantly higher counts of soil heterotrophs (5.7–7.9 log cfu g−1soil), aerobic N-fixer (3.9–5.4 log cfu g−1soil) and P-solubilizer (2.5−3.0 log cfu g−1soil) were recorded in Bt-cotton soils. Similarly, soil enzymatic activities, viz. dehydrogenase (16.6–22.67 µg TPF g−1 h−1), alkaline phosphatase (240–253 µg PNP g−1 h−1) and fluorescein di-acetate hydrolysis (14.6–18.0 µg fluorescein g−1 h−1), were significantly higher under Bt-cotton-soybean system than other Bt- and non-Bt-cotton based systems in all crop growth stages. The growth stage-wise order of soil microbiological activities were: boll development > harvest > vegetative stage. Significant correlations were observed between microbiological activities and active carbon pools in the rhizosphere soil. The findings indicated no adverse effect of Bt-cotton on soil biological properties

    Quantum Symmetries and Marginal Deformations

    Full text link
    We study the symmetries of the N=1 exactly marginal deformations of N=4 Super Yang-Mills theory. For generic values of the parameters, these deformations are known to break the SU(3) part of the R-symmetry group down to a discrete subgroup. However, a closer look from the perspective of quantum groups reveals that the Lagrangian is in fact invariant under a certain Hopf algebra which is a non-standard quantum deformation of the algebra of functions on SU(3). Our discussion is motivated by the desire to better understand why these theories have significant differences from N=4 SYM regarding the planar integrability (or rather lack thereof) of the spin chains encoding their spectrum. However, our construction works at the level of the classical Lagrangian, without relying on the language of spin chains. Our approach might eventually provide a better understanding of the finiteness properties of these theories as well as help in the construction of their AdS/CFT duals.Comment: 1+40 pages. v2: minor clarifications and references added. v3: Added an appendix, fixed minor typo
    corecore