In this paper, we study the fate of the holographic zero sound mode at finite
temperature and non-zero baryon density in the deconfined phase of the
Sakai-Sugimoto model of holographic QCD. We establish the existence of such a
mode for a wide range of temperatures and investigate the dispersion relation,
quasi-normal modes, and spectral functions of the collective excitations in
four different regimes, namely, the collisionless quantum, collisionless
thermal, and two distinct hydrodynamic regimes. For sufficiently high
temperatures, the zero sound completely disappears, and the low energy physics
is dominated by an emergent diffusive mode. We compare our findings to
Landau-Fermi liquid theory and to other holographic models.Comment: 1+24 pages, 19 figures, PDFTeX, v2: some comments and references
added, v3: some clarifications relating to the different regimes added,
matches version accepted for publication in JHEP, v4: corrected typo in eq.
(3.18