9 research outputs found

    Dispositif microfluidique pour la quantification de sous-populations de cellules

    Get PDF
    The quantitative detection of specific cells is usually carried out by flow cytometry due to its high sensitivity and reliability, however, this technique is not suited for routine screening and point-of-care diagnostics. Electrochemical methods, as electrochemical impedance spectroscopy have gained interest mainly due to a label-free detection and their miniaturization capability required for integration on chip. Furthermore, recent advances in microfabrication based technologies have allowed to develop micron-sized electrodes whose main advantages over conventional electrodes are higher impedances due to smaller currents and the possibility of being integrated inside microfluidic channels. The aim of the present work was the realization and the optimization of microfluidic devices with improved sensitivity targeting the immuno-trapping and counting of pro-inflammatory monocytes as infection markers. Taking into account the influence of the surface coverage on the sensitivity, different geometries were tested. The best sensitivities and reproducibility were recorded in the case of interdigitated micro-electrodes with weak inter-electrodes gap (50 µm). Moreover, experiments carried out with different surfaces demonstrated that there was a threshold beyond which a surface is exploitable for a given slice of concentration. Such microfluidic devices allowed to reach a detection limit around 10 cells/mL. Furthermore, due to the high sensitivity recorded, the devices were also tested to detect ligand binding by cell receptors. These studies have allowed to demonstrate the interaction of CHO-A2a with c-di-AMP for low cell concentrations.La détection quantitative de cellule est généralement réalisée par cytométrie en flux en raison de sa haute sensibilité, cependant cette technique est difficile à mettre en oeuvre pour des analyses de routine ou des analyses au chevet du patient. Les méthodes électrochimiques et en particulier la spectroscopie d'impédance électrochimique ont gagné en popularité en raison de la possibilité de réaliser des analyses sans marquage et de miniaturiser les systèmes d'analyse pour une intégration sur puce. De plus, les avancées récentes dans le domaine des technologies de microfabrication ont permis de développer des électrodes micrométriques ayant de nombreux avantages tels que des hautes impédances dues à des courants très faibles ainsi que la possibilité de les intégrer dans des systèmes microfluidiques. L'objectif de ce travail de thèse se concentre sur la réalisation et l'optimisation de dispositifs microfluidiques contenant les systèmes d'électrodes pour le piégeage immunologique et le comptage impédimétrique de monocytes pro-inflammatoires, marqueurs d'une infection. Compte tenu de l'influence du taux de recouvrement de la surface sur la sensibilité, plusieurs géométries d'électrodes ont été testées. Les meilleures sensibilités et reproductibilités ont été obtenues dans le cas de microélectrodes interdigitées ayant de faibles espaces inter-électrodes (50 µm). D'autre part les études ont également permis de montrer dans ce cas, que la gamme de concentration cellulaire pour laquelle la sensibilité était maximale dépendait de la surface de l'électrode. Les électrodes de plus petites surfaces ont permis d'atteindre une limite de détection inférieure à 10 cellules/mL. De plus, compte tenu de la grande sensibilité des dispositifs ainsi réalisés, ces systèmes ont également été testés pour la caractérisation d'interaction récepteurs-ligands à partir de cellules entières. Ces études ont permis de mettre en évidence l'interaction de cellules CHO exprimant le récepteur A2a à des ligands c-di-AMP pour de très faibles concentrations cellulaires

    Microfluidic device for quantification of subpopulations of cells

    No full text
    La détection quantitative de cellule est généralement réalisée par cytométrie en flux en raison de sa haute sensibilité, cependant cette technique est difficile à mettre en oeuvre pour des analyses de routine ou des analyses au chevet du patient. Les méthodes électrochimiques et en particulier la spectroscopie d'impédance électrochimique ont gagné en popularité en raison de la possibilité de réaliser des analyses sans marquage et de miniaturiser les systèmes d'analyse pour une intégration sur puce. De plus, les avancées récentes dans le domaine des technologies de microfabrication ont permis de développer des électrodes micrométriques ayant de nombreux avantages tels que des hautes impédances dues à des courants très faibles ainsi que la possibilité de les intégrer dans des systèmes microfluidiques. L'objectif de ce travail de thèse se concentre sur la réalisation et l'optimisation de dispositifs microfluidiques contenant les systèmes d'électrodes pour le piégeage immunologique et le comptage impédimétrique de monocytes pro-inflammatoires, marqueurs d'une infection. Compte tenu de l'influence du taux de recouvrement de la surface sur la sensibilité, plusieurs géométries d'électrodes ont été testées. Les meilleures sensibilités et reproductibilités ont été obtenues dans le cas de microélectrodes interdigitées ayant de faibles espaces inter-électrodes (50 µm). D'autre part les études ont également permis de montrer dans ce cas, que la gamme de concentration cellulaire pour laquelle la sensibilité était maximale dépendait de la surface de l'électrode. Les électrodes de plus petites surfaces ont permis d'atteindre une limite de détection inférieure à 10 cellules/mL. De plus, compte tenu de la grande sensibilité des dispositifs ainsi réalisés, ces systèmes ont également été testés pour la caractérisation d'interaction récepteurs-ligands à partir de cellules entières. Ces études ont permis de mettre en évidence l'interaction de cellules CHO exprimant le récepteur A2a à des ligands c-di-AMP pour de très faibles concentrations cellulaires.The quantitative detection of specific cells is usually carried out by flow cytometry due to its high sensitivity and reliability, however, this technique is not suited for routine screening and point-of-care diagnostics. Electrochemical methods, as electrochemical impedance spectroscopy have gained interest mainly due to a label-free detection and their miniaturization capability required for integration on chip. Furthermore, recent advances in microfabrication based technologies have allowed to develop micron-sized electrodes whose main advantages over conventional electrodes are higher impedances due to smaller currents and the possibility of being integrated inside microfluidic channels. The aim of the present work was the realization and the optimization of microfluidic devices with improved sensitivity targeting the immuno-trapping and counting of pro-inflammatory monocytes as infection markers. Taking into account the influence of the surface coverage on the sensitivity, different geometries were tested. The best sensitivities and reproducibility were recorded in the case of interdigitated micro-electrodes with weak inter-electrodes gap (50 µm). Moreover, experiments carried out with different surfaces demonstrated that there was a threshold beyond which a surface is exploitable for a given slice of concentration. Such microfluidic devices allowed to reach a detection limit around 10 cells/mL. Furthermore, due to the high sensitivity recorded, the devices were also tested to detect ligand binding by cell receptors. These studies have allowed to demonstrate the interaction of CHO-A2a with c-di-AMP for low cell concentrations

    Multilevel (3D) microfluidic technology for an innovative magnetic cell separation and couting platform

    No full text
    International audienceCurrently, the technique for the quantitative detection of cells is flow cytometry. This technique has the advantage of being sensitive and reliable but is expensive, time consuming and not suited to both routine screening and point‐of‐care diagnostics. Miniaturized cell separation devices offer many advantages such as the use of small volumes, portability and low cost.We propose a new concept of device which, by combining 3D fluid engineering and localized magnetic actuation, enables the full integration of cell tagging, magnetic separation and cell counting in a single device. The labs on chip are manufactured by laminating commercially available photosensitive dry film that fits microfluidic requirements and gives the possibility to build easily 3D microfluidic systems.We show we can tag efficiently THP1 monocytes and subsequently sort them through magnetic trapping on integrated micro-coils. The separation efficiency is studied at different flow rates. Cell counting capacity, evaluated by using non‐ faradic impedance spectroscopy revealed that the cell trapping is selective, depending on the specific antibody grafted and quantitative with the range of detection being 1000 to 30000 infected cells. This range of detection is consistent with the targeted application

    Ultra-High Frequencies continuous biological cell sorting based on repulsive and low dielectrophoresis forces

    No full text
    International audienceThis paper demonstrates the superior capabilities of Ultra-High Frequency dielectrophoresis (UHF-DEP) to sort populations of biological cells based on their intracellular dielectric characteristics. The proposed concept combines both hydrofluidic and repulsive dielectrophoresis forces into a microfluidic lab-on-chip to create a UHF-DEP cytometer. The main objective is to sort different types of cells using only negative dielectrophoresis principle. The idea is to select proper frequency for the applied electric field in order to produce different intensity of repulsive DEP forces related to the cell type. This sorting principle, without positive DEP, limits strong interaction of cells with the electric field, which could induce their permanent trapping during cytometer operation and reduces the efficiency of the cell sorting. Results presented in this paper demonstrate the capability of an effective sorting for mesenchymal cells

    Tracking Cancer Cells with Microfluidic High Frequency DEP Cytometer Implemented on BiCMOS Lab-on-Chip Platform

    No full text
    International audienceIn this paper, a fully BiCMOS integrated microfluidic cell sorting platform for cell properties study is introduced. Operating in the radiofrequency range, the presented device combined Lab-on-Chip and IC technologies to achieve label free cytometry using in flow cell selective dielectrophoresis deviation. Taking benefit of CMOS stack and integration capability, the first prototypes demonstrate the ability to separate cells with different intracellular dielectric properties. These results pave the way to new innovative high throughput integrated IC solutions for detection of rare cells in the frame of cancer researches and treatment

    Tracking Cancer Cells with Microfluidic High Frequency DEP Cytometer Implemented on BiCMOS Lab-on-Chip Platform

    No full text
    International audienceIn this paper, a fully BiCMOS integrated microfluidic cell sorting platform for cell properties study is introduced. Operating in the radiofrequency range, the presented device combined Lab-on-Chip and IC technologies to achieve label free cytometry using in flow cell selective dielectrophoresis deviation. Taking benefit of CMOS stack and integration capability, the first prototypes demonstrate the ability to separate cells with different intracellular dielectric properties. These results pave the way to new innovative high throughput integrated IC solutions for detection of rare cells in the frame of cancer researches and treatment
    corecore