7,950 research outputs found

    Exploiting Feature Selection in Human Activity Recognition: Methodological Insights and Empirical Results Using Mobile Sensor Data

    Get PDF
    Human Activity Recognition (HAR) using mobile sensor data has gained increasing attention over the last few years, with a fast-growing number of reported applications. The central role of machine learning in this field has been discussed by a vast amount of research works, with several strategies proposed for processing raw data, extracting suitable features, and inducing predictive models capable of recognizing multiple types of daily activities. Since many HAR systems are implemented in resource-constrained mobile devices, the efficiency of the induced models is a crucial aspect to consider. This paper highlights the importance of exploiting dimensionality reduction techniques that can simplify the model and increase efficiency by identifying and retaining only the most informative and predictive features for activity recognition. More in detail, a large experimental study is presented that encompasses different feature selection algorithms as well as multiple HAR benchmarks containing mobile sensor data. Such a comparative evaluation relies on a methodological framework that is meant to assess not only the extent to which each selection method is effective in identifying the most predictive features but also the overall stability of the selection process, i.e., its robustness to changes in the input data. Although often neglected, in fact, the stability of the selected feature sets is important for a wider exploitability of the induced models. Our experimental results give an interesting insight into which selection algorithms may be most suited in the HAR domain, complementing and significantly extending the studies currently available in this field

    Exciton states in monolayer MoSe2 and MoTe2 probed by upconversion spectroscopy

    Full text link
    Transitions metal dichalcogenides (TMDs) are direct semiconductors in the atomic monolayer (ML) limit with fascinating optical and spin-valley properties. The strong optical absorption of up to 20 % for a single ML is governed by excitons, electron-hole pairs bound by Coulomb attraction. Excited exciton states in MoSe2_2 and MoTe2_2 monolayers have so far been elusive due to their low oscillator strength and strong inhomogeneous broadening. Here we show that encapsulation in hexagonal boron nitride results in emission line width of the A:1ss exciton below 1.5 meV and 3 meV in our MoSe2_2 and MoTe2_2 monolayer samples, respectively. This allows us to investigate the excited exciton states by photoluminescence upconversion spectroscopy for both monolayer materials. The excitation laser is tuned into resonance with the A:1ss transition and we observe emission of excited exciton states up to 200 meV above the laser energy. We demonstrate bias control of the efficiency of this non-linear optical process. At the origin of upconversion our model calculations suggest an exciton-exciton (Auger) scattering mechanism specific to TMD MLs involving an excited conduction band thus generating high energy excitons with small wave-vectors. The optical transitions are further investigated by white light reflectivity, photoluminescence excitation and resonant Raman scattering confirming their origin as excited excitonic states in monolayer thin semiconductors.Comment: 14 pages, 7 figures, main text and appendi

    Deterministic and stochastic P systems for modelling cellular processes

    Get PDF
    This paper presents two approaches based on metabolic and stochastic P systems, together with their associated analysis methods, for modelling biological sys- tems and illustrates their use through two case studies.Kingdom's Engineering and Physical Sciences Research Council EP/ E017215/1Biotechnology and Biological Sciences Research Council/United Kingdom BB/D019613/1Biotechnology and Biological Sciences Research Council/United Kingdom BB/F01855X/

    Fatty acid metabolism and derived-mediators distinctive of ppar-α activation in obese subjects post bariatric surgery

    Get PDF
    Bariatric surger (BS) is characterized by lipid metabolic changes as a response to the massive release of non-esterified fatty acids (NEFA) from adipose depots. The study aimed at evaluating changes in polyunsaturated fatty acids (PUFA) metabolism and biosynthesis of the lipid mediators N-acylethanolamines (NAE), as indices of nuclear peroxisome proliferator-activated receptor (PPAR)α activation. The observational study was performed on 35 subjects (27 female, 8 male) with obesity, undergoing bariatric surgery. We assessed plasma FA and NAE profiles by LC-MS/MS, clinical parameters and anthropometric measures before and 1 and 6 months after bariatric surgery. One month after bariatric surgery, as body weight and clinical parameters improved significantly, we found higher plasma levels of N-oleoylethanolamine, arachidonic and a 22:6-n3/20:5-n3 ratio as evidence of PPAR-α activation. These changes corresponded to higher circulating levels of NEFA and a steep reduction of the fat mass. After 6 months 22:6-n3/20:5-n3 remained elevated and fat mass was further reduced. Our data suggest that the massive release of NEFA from adipose tissue at 1-Post, possibly by inducing PPAR-α, may enhance FA metabolism contributing to fat depot reduction and improved metabolic parameters in the early stage. However, PUFA metabolic changes favor n6 PUFA biosynthesis, requiring a nutritional strategy aimed at reducing the n6/n3 PUFA ratio

    On the Shear Instability in Relativistic Neutron Stars

    Full text link
    We present new results on instabilities in rapidly and differentially rotating neutron stars. We model the stars in full general relativity and describe the stellar matter adopting a cold realistic equation of state based on the unified SLy prescription. We provide evidence that rapidly and differentially rotating stars that are below the expected threshold for the dynamical bar-mode instability, beta_c = T/|W| ~ 0.25, do nevertheless develop a shear instability on a dynamical timescale and for a wide range of values of beta. This class of instability, which has so far been found only for small values of beta and with very small growth rates, is therefore more generic than previously found and potentially more effective in producing strong sources of gravitational waves. Overall, our findings support the phenomenological predictions made by Watts, Andersson and Jones on the nature of the low-T/|W|.Comment: 20 pages; accepted to the Classical and Quantum Gravity special issue for MICRA200

    Role of the (Mn)superoxide dismutase of Enterococcus faecalis in the in vitro interaction with microglia

    Get PDF
    Enterococcus faecalis is a significant human pathogen worldwide and is responsible for severenosocomial and community-acquired infections. Although enterococcal meningitis is rare,mortality is considerable, reaching 21 %. Nevertheless, the pathogenetic mechanisms of thisinfection remain poorly understood, even though the ability of E. faecalis to avoid or survivephagocytic attack in vivo may be very important during the infection process. We previouslyshowed that the manganese-cofactored superoxide dismutase (MnSOD) SodA of E. faecalis wasimplicated in oxidative stress responses and, interestingly, in the survival within mouse peritonealmacrophages using an in vivo\u2013in vitro infection model. In the present study, we investigated therole of MnSOD in the interaction of E. faecalis with microglia, the brain-resident macrophages. Byusing an in vitro infection model, murine microglial cells were challenged in parallel with the wildtypestrain JH2-2 and its isogenic sodA deletion mutant. While both strains were phagocytosedby microglia efficiently and to a similar extent, the DsodA mutant was found to be significantlymore susceptible to microglial killing than JH2-2, as assessed by the antimicrobial protectionassay. In addition, a significantly higher percentage of acidic DsodA-containing phagosomes wasfound and these also underwent enhanced maturation as determined by the expression ofendolysosomal markers. In conclusion, these results show that the MnSOD of E. faecaliscontributes to survival of the bacterium in microglial cells by influencing their antimicrobial activity,and this could even be important for intracellular killing in neutrophils and thus for E. faecalispathogenesis
    • 

    corecore