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Abstract This paper presents two approaches based on metabolic and stochastic P

systems, together with their associated analysis methods, for modelling biological sys-

tems and illustrates their use through two case studies.
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1 Introduction

Membrane computing is a new and vigorous nature inspired computational paradigm

which brings to computer science and associated areas a set of concepts, principles

and information from cellular biology with the aim of producing a coherent, robust

and efficient computational mechanism, called P system, that mimics the behaviour of

some cellular processes [26].

This paradigm was initially introduced in theoretical computer science as an ab-

stract computational mechanism [25] and it soon became apparent that this approach

relying on hierachically organised compartments, complex multisets of objects and
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diverse rewriting sets of rules, would impact on areas far beyond computer science.

Applications in biology, economics, graphics, artificial life, self-assembly, are just few

from a large list of existing and potential branches of research domains utilising P

systems [26].

Of a particular interest are the applications in biology, as this line of research

emerged in this context and utilises concepts and phenomena specific to it. Most of

the theoretical and computational studies considered so far have imposed variants of P

systems relying on an evolution strategy whereby in each step the rules are applied in a

non-deterministic and maximally parallel manner. By contrast, most of the applications

of P systems in biology have used different execution strategies based on deterministic

or probabilistic/stochastic approaches. These variants of P systems, by introducing a

certain control over the strategy of applying the rules, allow to perform qualitative and

approximate or exact quantitative studies.

In this paper we present two of the most successful modelling approaches based on

P systems and largely utilised to describe biological systems. One of these approaches,

based on metabolic P systems, shortly MP systems, uses a deterministic evolution ruled

by a set of functions, called flux maps, that govern the execution of the system. The

other approach uses stochastic P systems, a method relying on a particular scheduling

mechanism based on Gillespie algorithm [13]. Two case studies will illustrate the use

of these approaches in modelling the behaviour of biological systems and the interplay

between these models and other tools utilised in the analysis of biological systems.

2 Preliminaries

2.1 Metabolic P Systems: Basic Concepts and Definitions

In metabolic systems, matter inside a reactor is partitioned in a certain number of

substances transformed in time by some reactions. If we consider the system, along a

discrete number of steps, at some specific time interval, we observe that the reactions

transform the substance matter, but also that matter (of given types) is introduced

from the external environment, or expelled outside. Therefore, abstractly, reactions are

agents performing matter transformations. Avogadro’s principle, which is fundamental

in chemistry, rules the behaviour of any reaction r, at any step. In fact r “moves”

(consumes/produces) multiples of the same number of objects (molecules), which we

call reaction unit or flux of r. The “stoichiometry” of r establishes its “reactants”

(consumed substances) and its “products” (produced substances). We call this kind of

transformation mechanism a molar multiset rewriting. It differs from the usual multiset

rewriting of P systems. In fact, in the classical case, a rule ddc → b replaces two d and

one c by only one b (the order does not matter), and the application of such a rule is

individual. On the contrary, in a molar multiset rewriting perspective, an occurrence

of d, c, and b in a rule means a population of d, c, and b respectively, and the size

of this population is just the reaction unit of the reaction (a value depending on the

state of the system). The place of substances, with respect to the arrow, →, of the

rule, means increment or decrement (production or consumption). This perspective

implies that the time of the system is not the microscopic time of reaction kinetics, but

the macroscopic time of the observer. Therefore, it is enough to know the substance

variations between two consecutive observation instants. The additivity of the effects of

all reactions correspond to another chemical principle, referred to as Dalton’s principle.
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According to it, if we compute the reaction unit of each reaction, then by adding the

effects of all reactions we can compute the next state of the system. This strategy, we

call it the matter partition, is the essence of the MP dynamics [17–19,21–24].

In simple words, a computation step in the dynamics of an MP is obtainable in

the following way: i) compute the reaction units; ii) apply the reactions, according to

the reaction units they transform; iii) replace the matter they consume with the matter

they produce.

In the following, Greek letters α, β, . . . (with possible subscripts) denote finite mul-

tisets (strings where symbol order is irrelevant) over an alphabet X of substances. A

reaction r is also indicated by αr → βr, where αr, βr are the reactants and products

of r. For a multiset α, we denote by |α|x the multiplicity of x in α and by |α| the sum∑
x∈α |α|x, where x ∈ α means that the multiplicity of x in α is different from zero.

Definition 1 The stoichiometric matrix A of a set R of reactions over a set X

of substances is A = (Ax,r | x ∈ X, r ∈ R) where Ax,r = |βr|x − |αr|x. The set of

reactions having the substance x as a reactant is Rα(x) = {r ∈ R | |αr|x > 0} and the

set of rules consuming or producing x is R(x) = {r ∈ R | Ax,r 6= 0}. Two reactions

r1, r2 compete for some substance x ∈ X if r1, r2 ∈ Rα(x).

A discrete dynamical system is given by a set of states and by a discrete dynamics

on them, that is, by a function from the set N of natural numbers to the states of

the system. In this context, the natural numbers which are arguments of the dynamics

are called instants or steps. This general notion of dynamical system is the common

basis of the types of MP systems we will subsequently define. The following definition

introduces a class of MP systems, which are called MP systems with flux maps, or

shortly MPF systems (F may be omitted).

Definition 2 (MPF System) An MP system with flux regulation maps, shortly an

MPF system, is a discrete dynamical system given by a construct

M = (X, R, V, Q, Φ, ν, µ, τ, q0, δ)

where X, R, V are finite disjoint sets, and the following conditions hold, with n, m, k ∈
N:

– X = {x1, x2, . . . , xn} is the set of substances (the types of molecules);

– R = {r1, r2, . . . , rm} is the set of reactions over X, that is, pairs (in arrow nota-

tion) of type α → β with α, β strings over the alphabet X (sometimes concatena-

tion is denoted by + to stress the commutativity implicit in the string notation of

multisets);

– V = {v1, v2, . . . , vk} is the set of parameters (such as pressure, temperature,

volume, pH, . . . ) equipped with a set {hv : N → R | v ∈ V } of parameter

evolution functions, the elements of X ∪ V are called magnitudes;

– Q is the set of states, that is, of the functions q : X ∪ V → R, from magnitudes to

real numbers.

– Φ = {ϕr | r ∈ R} is a set of flux (regulation) maps, where the function ϕr :

Q → R states the amount (moles) which is consumed/produced, in the state q, for

every occurrence of a reactant/product of r. We set by U(q) = (ϕr(q)|r ∈ R) the

flux vector at state q;

– ν is a natural number which refers to the number of molecules of a (conventional)

mole of M , as its population unit;
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– µ is a function which assigns, to each x ∈ X, the mass µ(x) of a mole of x (with

respect to some measure unit);

– τ is the temporal interval between two consecutive observation steps;

– q0 ∈ Q is the initial state;

– δ : N → Q is the dynamics of the system. At the initial instant it provides the

initial state, that is, δ(0) = q0. Moreover, for any parameter v ∈ V and for any

i ≥ 0, (δ(i))(v) = hv(i), while the function δ provides the evolution of substance

quantities by means of stoichiometric matrix A and vectors U . In fact, let us set,

for any magnitude w ∈ X ∪ V and i ≥ 0

(δ(i))(w) = w[i]

and

X[i] = (x[i] | x ∈ X)

then the dynamics of substances is given by the following recurrent vector equation

also called Equational Metabolic Algorithm (EMA), where × is the usual

matrix multiplication, and the sum between vectors is the usual component-wise

sum (analogously, vector difference and division are component-wise difference and

division):

X[i + 1] = A× U(δ(i)) + X[i] (1)

where A is the stoichiometric matrix of R over X (according to dynamics δ, the

value δ(i) identifies some state q ∈ Q).

If EMA[i] is the system at step i, given the vectors of U(δ(i)) and X[i], we can obtain

the vector X[i + 1] by evaluating the right member of the equation above.

All the components of an MP system, apart from the set Q of states (deducible from the

other components), and the dynamics, constitute an MP graph, easily representable

in graphical form (see Fig. 1). When in a MP graph the elements τ, ν, µ are omitted,

then we call it an MP grammar, that is, a multiset rewriting grammar where rules

are regulated by functions (usually rational algebraic expressions). Such a grammar is

completely defined by: i) reactions, ii) flux maps (substances are the elements occur-

ring in the reactions, and parameters are the arguments of flux maps different from

substances), iii) parameter evolution maps, and iv) initial values of magnitudes. Pa-

rameter evolution maps or initial values may be omitted when only the MP grammar

structure is specified. A kind of equivalence between MPF systems and hybrid Petri

nets was proved in [8], where it is shown that MP formulation provides logical and

computational advantages.

MP systems proved to be relevant in the analysis of dynamics of metabolic pro-

cesses. Their structure clearly distinguishes a reaction level and a regulation level. We

showed that an essential component of the regulation level can be deduced by applying

the log-gain theory to data that can be collected from observations of the system. The

log-gain method can deduce, in a given metabolic system, a time series of (approxi-

mate) flux unit vectors U [i] (i ranging in time instants), from a time series of observed

states (substance and parameter values). This method [19,21], uses a suitable formu-

lation of the allometric principle [6], which along a process of adaptation, by means

of the specific biological information about the model under investigation, provides a

square, univocally solvable linear system, called OLGA[i] involving substances, param-

eters and flux units for each step i of an observation time series. The solution of this
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system provides the flux units in that state. In this manner a time series of flux units

is recovered, and from it, by using regression and optimization techniques, the MP flux

regulation maps can be deduced. This is a crucial aspect for identifying models when

no other model is available and microscopic determination of kinetic rates are difficult,

or even impossible, to perform. This method was successfully applied in several cases.

In particular a complex model of a photosynthetic process was recently obtained [24]

entirely by this procedure.

2.2 Stochastic P Systems: Basic Concepts and Definitions

The probabilistic and stochastic approaches discussed in this paper rely on a basic cell-

like P system structure [26]. This system, although it relies on the same basic concept

of P system, as metabolic P system, has many different characteristics. It is a stochas-

tic mechanism, it has, in general, more than one compartment, exhibits a different

behaviour due to a special scheduling procedure to execute the rules. Consequently,

some notations below, even those that refer to the same basic components might be

different from those used by MP systems.

Definition 3 A stochastic P system is a construct:

ΠS = (V, µ, ms1, . . . , msn, R1, . . . , Rn)

where:

– V is the finite alphabet of simple objects;

– µ is the membrane structure, formally represented, as a rooted tree, where the nodes

are called membranes, and the relationship of a membrane being inside another one

is specified as the corresponding node being the descendant of the other one;

– msi, 1 ≤ i ≤ n, is the initial state of the compartment i, consisting of a multiset

of objects from V ;

– Ri, 1 ≤ i ≤ n, is the finite set of evolution and communication rules on multisets

of objects. Each evolution-communication rule from Ri is represented by a generic

rewriting rule, called boundary rule [5], and has the following form:

r : ms1 [ ms2 ]i
c−→ ms′1 [ ms′2 ]i

These multiset rewriting rules operate on both sides of the membrane defining the

compartment i, i.e., a multiset ms1 outside the membrane i and a multiset ms2

from the compartment i are simultaneously replaced by the multisets ms′1 and

ms′2, respectively. When ms1, ms′1 are not present then one has an evolution rule,

whereas when either ms1 = ms′2 and ms2, ms′1 are absent or ms2 = ms′1 and

ms1, ms′2 are not present, then r denotes a communication rule. The constant c as-

sociated with this rule is called kinetic stochastic constant and is used together with

the number of objects occurring on their left-hand side to compute the probabilities

associated to them.

The simple objects, elements of V , denote simple molecular species; one can also

describe by strings over V more complex molecules, like DNA’s, RNA’s, proteins, but

these are not discussed here. A multiset, ms, is represented as ms = e1 + . . .+ ep, with

ei denoting simple objects. The symbol + might be omitted when writting a multiset.
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A computation in a stochastic P system, ΠS , starts from the initial multisets by

setting the simulation time to 0. In each iteration and in every compartment, Gillespie’s

algorithm [13] is used to compute a rule that will be next executed and the time

needed to apply it. The rule with the smallest time value is selected to be executed, the

simulation time and the waiting time of the rules selected from the other compartments

are updated. In the next step, only the compartment(s) affected by the application

of the last rule is (are) involved in identifying the rule(s) and its (their) associated

execution time(s) according to Gillespie method. This algorithm is very precise and

widely used in stochastic simulations. However, it is slow due to a sequential execution

of the rules across the entire system.

Cellular systems are highly complex structures with many compartments and nu-

merous molecules interacting in various ways. The compartments are, in general, tightly

inter-related and their contents change over time. In order to faithfully reflect the com-

plex processes that take place, it is necessary to establish a set of modelling principles.

In any formal framework a set of implicit or explicit robust methods and techniques

are employed in order to automate the process of generating the model, especially

for highly complex systems with many components and interactions between them.

This approach is also used to devise sound principles of mapping between different

formalisms and to formally verify and test certain properties of the dynamics of the

system. A mapping between cellular regions and compartments, molecules, molecular

and inter-cellular interactions and various parts of a stochastic P system has been

identified according to the basic principles of P systems [26] and some modelling re-

quirements [30]. According to this mapping, biological compartments are described

as P systems regions, chemical molecules are defined by objects and interactions by

evolution-communication rules. In this respect a broad range of chemical interactions

- complex formation and dissociation, binding and debinding, diffusion, degradation

etc., can be represented in a uniform and rigorous way.

A first attempt to model molecular interactions based on P systems is given in [15]

and a stochastic approach has been provided in [30]. Multicellular systems can also

be represented in this context by using a tissue-like paradigm, whereby the hierachical

structure of compartments is replaced by a network of components and hierarchical

interactions are replaced by interactions between neighbours. The approach has been

used to abstractly represent and model colonies of bacteria [3] and quorum sensing

systems in the marine bacterium Vibrio fischeri from an artificial life perspective [32]. A

similar approach to stochastic P systems uses the concept of dynamical probabilistic P

systems [28]; in this case the maximal parallelism feature combined with a probabilistic

way of selecting the rules is applied to model biological systems.

Any modelling approach, either continuous or discrete, deterministic or stochastic,

provides through its semantics a way to execute and consequently to obtain simula-

tions for the systems analysed. On the other hand it brings a rich palette of methods

and tools to analyse a system and to verify certain properties of the dynamics of the

system. One of the most popular methods to verify such properties relies on the use of

adequate model checkers. For systems with a stochastic behaviour such a model checker

is PRISM (abbreviation for Probabilistic and Symbolic Model Checker), which offers

both a specification language, allowing the representation of the data and processes

involved and a query language based on temporal logic, which is used to verify various

properties of the model [16]. The main parts of a P system definition, components and

objects, are mapped into modules and variables, respectively, and the evolution and

communication rules are transformed into commands simulating them [4,31].
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A PRISM specification of the model allows to simulate it and generate information

regarding the bahaviour of the system and collect data related to the concentration

level of various molecular species for given initial values. Using the temporal logic query

language certain properties of the model can be also verified; for instance, whether cer-

tain molecules reached given concentration levels, equilibrium and/or steady states etc.

[4,31]). To help identifying the right properties that are verified, a methodology based

on reverse-engineering specifications from software systems [11], in terms of invariants

or rules that hold true at particular points of a program, has been established and

successfully applied for some systems [4].

Very often a model is quite complex and might contain unknown elements or noisy

data. We face these problems for P system models as well. Although the structure of a

P system is inherently divided into hierarchically organised compartments, in certain

cases this might not be enough to manage the high complexity of the system. Through

modularity design [33] a certain level of finer granularity is obtained, but also one may

get a greater generality by reusing some of the designed components. In order to tackle

the unknown structural information or to estimate various parameters that occur in

these systems, a certain methodology has been successfully implemented [29].

3 Modelling a Mitotic Oscilator with Metabolic P Systems

Now we consider a classical example of biological modelling, which concerns an im-

portant case study of the mitotic oscillator, reported in [14]. Mitotic oscillations are

mechanisms exploited by nature to regulate the onset of mitosis, that is, the process of

cell division aimed at producing two identical daughter cells from a single parent cell.

More precisely, mitotic oscillations concern the fluctuation in the activation state of a

protein produced by cdc2 gene in fission yeasts or by homologous genes in other eu-

karyotes. The model here considered focuses on the simplest form of this mechanism,

as it is found in early amphibian embryos. Here cyclin is synthesized at a constant

rate and triggers the transformation of inactive (M+) into active (M) cdc2 kinase,

by enhancing the rate of a phoshatase. A second kinase reverts this modification. On

the other hand a third kinase elicits the transformation from the inactive (X+) to the

active (X) form of a protease that degrades cyclin, and this activation is reverted by a

phoshatase. Magnitudes Vi, Vd denote the speed of cyclin production and degradation

respectively, while V2, V4 are prameters defined in Table 1, and V1, V3 are parameters

defined in Table 4.

The activation of cdc2 kinase provides the formation of a complex known as M-

phase promoting factor (or MPF ). The complex triggers mitosis and the degradation

of cyclin leads to the inactivation of the cdc2 kinase that brings the cell back to the

initial conditions in which a new division cycle can take place. In yeasts and in somatic

cells the cell cycle is subject to the control of many checkpoints, but the mechanism

based on the activation-inactivation of cdc2 kinase remains the same [1].
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Table 1 Golbeter’s values of constants.

K1 = 0.005 K2 = 0.005 K3 = 0.005 K4 = 0.005
V M1 = 3 min−1 V M3 = 1 min−1 V 2 = 1.5 min−1 V 4 = 0.5 min−1

Vi = 0.025 µM ·min−1 Vd = 0.25 µM ·min−1 Kc = 0.5 µM KKd = 0.02 µM
Kd = 0.01 min−1 S = 0.001

Table 2 Initial values of substances.

C = 0.01 M = 0.01 Mp = 0.99 X = 0.01 Xp = 0.99

Table 3 MP reactions and flux maps of Golbeter’s mitotic oscillator (λ is the empty multiset).

R1 : λ → C F1 = S · V i
R2 : C → λ F2 = S ·Kd · C
R3 : C Mp → C M F3 = (S · V 1 ·Mp)/(K1 + Mp)
R4 : C X → X F4 = (S · V d ·X · C)/(KKd + C)
R5 : M → Mp F5 = (S · V 2 ·M)/(K2 + M)
R6 : Xp M → X M F6 = (S · V 3 ·Xp)/(K3 + Xp)
R7 : X → Xp F7 = (S · V 4 ·X)/(K4 + X)

The following equations provide Golbeter’s model:

dC
dt = Vi − VdX C

KKd+C −KdC

dM
dt = V1

(1−M)
K1+(1−M)

− V2
M

K2+M

dX
dt = V3

(1−X)
K3+(1−X)

− V4
X

K4+X

(2)

The corresponding MP model is identified, according to a procedure similar to one

introduced in [12]. In this case, differently than [19], dynamics was given by EMA

(equation (1) of Definition 2), with a more natural procedure for inferring flux reg-

ulation maps from the Golbeter’s differential model. Namely, from the first equation

of (2) we deduce the fluxes of reactions consuming and producing C (R1 producing,

and R2.R4 consuming). They are multiplied by a variable S representing the speed

of reactions at each step (in our simulation S = 0.001). Analogously, from the sec-

ond equation fluxes for reactions R3 and R5 were deduced (producing and consuming

M), and finally, from the third equation fluxes of reactions R6 and R7 were deduced

(producing and consuming X).

Tables 1, 2, 3, 4, and Figures 1, 2 refer to this MP model and its dynamics, which

was generated by the software MetaP lab (available at http://mplab.sci.univr.it which

implements many tools of design and analysis of MP systems). The curves of our MP

dynamics coincide perfectly with the classical curves of Golbeter’s model.
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Table 4 Parameters evolutions and initial values.

V 1 : Initial values: 0.0588 Evolution: (C · V M1)/(Kc + C)
V 3 : Initial values: 0.01 Evolution: M · V M3

Fig. 1 The MP graph of the mitotic oscillator according to the graphical notation introduced
in [22].

Fig. 2 The dynamics of the mitotic oscillator generated by the MetaPlab software [7].

4 Modelling the Repressilator with Stochastic P Systems

Transcriptional regulatory networks are responsible for the functioning of essential

cellular systems. Nevertheless, the design principles of the mechanisms involved in these

processes are not fully understood. A recent approach to advance the understanding

of their functioning consists in the design and construction of synthetic transcriptional

networks exhibiting desirable behaviour, synthetic biology [2].

One of the main goals in synthetic biology is the characterisation of gene regulation

modular patterns exhibiting certain functionalities. These molecular modules should

be, to some extent, separable or orthogonal to the rest of the network where they are

embedded, in such a way that their functioning is preserved when they are removed

from their original network and synthetically wired to a new one.
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Stochastic P systems aim at providing an efficient modelling methodology for syn-

thetic biology by introducing the concept of P system module [33]. A basic library of P

system modules describing the best known and characterised gene regulation modular

patterns was introduced in [33]. An evolutionary algorithm able to automatically gen-

erate gene regulatory networks exhibiting a prefixed behaviour by combining P systems

modules was developed in [29].

The Repressilator is one of the first synthetic genetic circuits [10]. It consists of

three genes, lacI, the operon lactose repressor, tetR, the repressor from the tetracycline

transposon, and cI, a repressor from the λ phage virus. The network is built in such

a way that lacI gene represses cooperatively the tetR gene, which in turn represses

coopertively cI. Finally in order to close the cycle the gene cI represses lacI.

In what follows we introduce a P system modular specification of the Repressilator

which could help understanding its rational design. Two different P system modules

are used.

The first one, UnReg({G, R, P}, {c1, c2, c3, c4}, {l}), describes the unregulated ex-

pression of a gene G into its mRNA R, rule r1 in (3); which is in turn translated into

its corresponding protein P , rule r2 in (3). Degradation of the mRNA and protein are

also modelled by rules r3 and r4 in (3).

UnReg({G, R, P}, {c1, c2, c3, c4}, {l}) =





r1 : [ G ]l
c1−→ [ G + R ]l,

r2 : [ R ]l
c2−→ [ R + P ]l,

r3 : [ R ]l
c3−→ [ ]l,

r4 : [ P ]l
c4−→ [ ]l





(3)

The second P system module, CoopRepr({Rep, G, R}, {c1, . . . , c6}, {l}), describes

the repression mechanism of a repressor Rep over a gene G whereby a first repressor

molecule binds to the promoter of the gene with a low affinity, rules r1 and r2 in (4).

In contrast this first binding helps a second repressor to bind to the promoter of the

gene with a high affinity, rules r3 and r4 in (4). A leakiness in transcription is taken

into account even when the repressors are bound to the promoter of the gene, rules r5

and r6 in (4).

CoopRepr({Rep, G, R}, {c1, . . . , c6}, {l}) =





r1 : [ Rep + G ]l
c1−→ [ Rep.G ]l,

r2 : [ Rep.G ]l
c2−→ [ Rep + G ]l,

r3 : [ Rep + Rep.G ]l
c3−→ [ Rep2.G ]l,

r4 : [ Rep2.G ]l
c4−→ [ Rep + Rep.G ]l,

r5 : [ Rep.G ]l
c5−→ [ Rep.G + R ]l,

r6 : [ Rep2.G ]l
c6−→ [ Rep2.G + R ]l,





(4)

The design of the Repressilator is obtained by instantiating these modules with the

objects describing the corresponding genes, mRNAs and protein products in Table 5

and with the stochastic constants in Table 6 according to the reported estimates in

[10]. This P system modular specification of the Repressilator is presented in Table 7,

its corresponding expansion using only elementary P system rules is shown in Table 8

and a graphical representation of the circuit is presented in Figure 3.

Our modular P system specification of the Repressilator was executed according

to the stochastic semantics based on Gillespie algorithm associated with stochastic P

systems [27] in order to obtain different simulations of the behaviour of the Repressi-

lator, see Figure 4. Our results show that the circuit produces oscillations of the three
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Table 5 Specification of the molecular species

Objects Molecular Species
lacI, mlacI, LacI lacI gene, mRNA and protein
CI.lacI, CI2.lacI CI repressors bound to the lacI promoters
tetR, mtetr, TetR tetR gene, mRNA and protein
LacI.tetR, LacI2.tetR LacI repressors bound to the tetR promoters
cI, mcI, CI cI gene, mRNA and protein
TetR.cI, TetR2.cI TetR repressors bound to the cI promoters

Table 6 Stochastic Parameters

Stochastic Constant Description
c1 = 1 s−1 Repressor binding to the promoters
c2 = 224 s−1 Repressor debinding from first occupied promoter
c3 = 9 s−1 Repressor debinding from second occupied promoter
c4 = 0.5 s−1 Transcription from unoccupied promoters
c5 = 5× 10−4 s−1 Transcription from occupied promoters
c6 = 0.167 s−1 Translation rate
c7 = 5.78× 10−3 s−1 Messenger RNA degradation
c8 = 1.16× 10−3 s−1 Protein degradation

Table 7 Modular Specification of the Repressilator

Module Description

UnReg({lacI, mlacI, LacI}, {c4, c6, c7, c8}, {b}) Unregulated expression of lacI

CoopRepr({LacI, tetR, mtetR}, {c1, c2, c1, c3, c5, c5}, {b}) LacI cooperative repression over tetR

UnReg({tetR, mtetR, TetR}, {c4, c6, c7, c8}, {b}) Unregulated expression of tetR

CoopRepr({TetR, cI, mcI}, {c1, c2, c1, c3, c5, c5}, {b}) TetR cooperative repression over cI

UnReg({cI, mcI, CI}, {c4, c6, c7, c8}, {b}) Unregulated expression of cI

CoopRepr({CI, lacI, mlacI}, {c1, c2, c1, c3, c5, c5}, {b}) CI cooperative repression over lacI

repressor molecules according to the order they are connected in the network; that

is TetR, CI and LacI. The oscillations are very noisy during the first 100 minutes to

subsequently become more even. Nevertheless, the amplitude and frequency of the os-

cillations vary considerably during the simulations due to stochastic effects, see Figure

4.

Our methodology based on stochastic P systems is not only limited to the genera-

tion of simulations. We also support exhaustive and formal analysis of P system models

using the probabilistic and symbolic model checker PRISM [4,31]. In our study of the

Repressilator we analysed the advantage of using cooperative versus non-cooperative

repression. In cooperative repression, the mechanism used in the Repressilator, two re-

pressors molecules are needed to fully repress transcription. First a repressor molecule

recognises the promoter of a gene with a low affinity and subsequently it helps another

repressor to bind the promoter with a higher affinity. In contrast, in non-cooperative

repression the binding of a single repressor molecule to the promoter of a gene is enough

to stop transcription.

We have compared both mechanisms according to their repressor efficiency, the

expected occupancy time of the gene promoter in full repression for different number

of repressors. This was achieved by associating a reward to each state of our model

corresponding to the presence of the object which represents the fully repressed gene.

A temporal logic query was formulated to compute the expected cumulative reward
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Table 8 Repressilator rules

Number Rule Stochastic Constant

r1 : [ lacI ]b
c1−→ [ lacI + mlacI ]b c1 = 0.5 s−1

r2 : [ mlacI ]b
c2−→ [ ]b c2 = 5.78× 10−3 s−1

r3 : [ mlacI ]b
c3−→ [ mlacI + LacI ]b c3 = 0.167× 10−4 s−1

r4 : [ LacI ]b
c4−→ [ ]b c4 = 1.16× 10−3 s−1

r5 : [ LacI + tetR ]b
c5−→ [ LacI.tetR ]b c5 = 1 s−1

r6 : [ LacI.tetR ]b
c6−→ [ LacI + tetR ]b c6 = 224 s−1

r7 : [ LacI + LacI.tetR ]b
c7−→ [ LacI2.tetR ]b c7 = 1 s−1

r8 : [ LacI2.tetR ]b
c8−→ [ LacI + LacI.tetR ]b c8 = 9 s−1

r9 : [ LacI.tetR ]b
c9−→ [ LacI.tetR + mtetR ]b c9 = 5× 10−4 s−1

r10 : [ LacI2.tetR ]b
c10−→ [ LacI2.tetR + mtetR ]b c10 = 5× 10−4 s−1

r11 : [ tetR ]b
c11−→ [ tetR + mtetR ]b c11 = 0.5 s−1

r12 : [ mtetR ]b
c12−→ [ ]b c12 = 5.78× 10−3 s−1

r13 : [ mtetR ]b
c13−→ [ mtetR + TetR ]b c13 = 0.167× 10−4 s−1

r14 : [ TetR ]b
c14−→ [ ]b c14 = 1.16× 10−3 s−1

r15 : [ TetR + cI ]b
c15−→ [ TetR.cI ]b c15 = 1 s−1

r16 : [ TetR.cI ]b
c16−→ [ TetR + cI ]b c16 = 224 s−1

r17 : [ TetR + TetR.cI ]b
c17−→ [ TetR2.cI ]b c17 = 1 s−1

r18 : [ TetR2.cI ]b
c18−→ [ TetR + TetR.cI ]b c18 = 9 s−1

r19 : [ TetR.cI ]b
c19−→ [ TetR.cI + mcI ]b c19 = 5× 10−4 s−1

r20 : [ TetR2.cI ]b
c20−→ [ TetR2.cI + mcI ]b c20 = 5× 10−4 s−1

r21 : [ cI ]b
c21−→ [ cI + mcI ]b c21 = 0.5 s−1

r22 : [ mcI ]b
c22−→ [ ]b c22 = 5.78× 10−3 s−1

r23 : [ mcI ]b
c23−→ [ mcI + CI ]b c23 = 0.167× 10−4 s−1

r24 : [ CI ]b
c24−→ [ ]b c24 = 1.16× 10−3 s−1

r25 : [ CI + lacI ]b
c25−→ [ CI.lacI ]b c25 = 1 s−1

r26 : [ CI.lacI ]b
c26−→ [ CI + lacI ]b c26 = 224 s−1

r27 : [ CI + CI.lacI ]b
c27−→ [ CI2.lacI ]b c27 = 1 s−1

r28 : [ CI2.lacI ]b
c28−→ [ CI + CI.lacI ]b c28 = 9 s−1

r29 : [ CI.lacI ]b
c29−→ [ CI.lacI + mlacI ]b c29 = 5× 10−4 s−1

r30 : [ CI2.lacI ]b
c30−→ [ CI2.lacI + mlacI ]b c30 = 5× 10−4 s−1

during an interval of time for different number of repressors. The percentage of the

occupancy time for both mechanisms is shown in Figure 5. These results show that in

the case of cooperative repression the system exhibits a switch-like behaviour. On the

one hand, for small number of repressors the gene will seldom become fully repressed.

On the other hand, as soon as a threshold of around ten repressors is exceeded the

gene will be drastically repressed. In contrast in the case of non-cooperative repression

the system shows a more linear and sluggish repression efficiency for different number

of repressors. Therefore, cooperative repression should be chosen over non-cooperative

repression if one wants to engineer a system with switch-like dynamics as it is the case

of the Repressilator.
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Fig. 3 Graphical representation of the genetic circuit forming the Repressilator. Genes are
depicted as rectangles, messenger RNAs as rhomboids and proteins as rounded rectangles.
Transcription factor binding and debinding are represented using arrows with filled circles and
arrows with concentric circles respectively. Transcription and translation are represented with
double headed arrows to describe the fact the reactants are not consumed in the reaction.
Finally, the empty set symbol is used to refer to the degradation.

5 Discussions

In this section are summarised the most important common features of the two mod-

els presented and significant differences that make them particularly appropriate for

certain applications.

Both metabolic P systems and stochastic P systems rely on the same basic for-

malism inspired by the structure and functionality of the living cell, the membrane

system. In its initial form the membrane system concept utilised a maximal parallel

approach as its main scheduling mechanism governing the execution of the system.

According to this mechanism, in every single step as many symbol objects as possible

are processed, by using rules in a non-deterministic manner. Although this principle

proves to be very effective for the computational power and efficiency of P systems, it

shows its limits in many circumstances when various problems and applications require

quite different scheduling mechanisms. Both approaches presented in this paper have

considered different scheduling mechanisms that distinguish them from the main body

of research dealing with maximal parallelism and non-determinism.

Another common feature of the variants of P systems considered in this paper is

given by the applicability area of them; both surfaced as appropriate models of molec-

ular and cellular interactions. In both cases, together with a comprehensive theoretical

basis, a sound methodology to model biological systems is developed in this framework

and adequate tools have been produced to help analysing and simulating these systems.

Both have shown a powerful capability to interact with existing verification techniques

and tools or suggest a great potential in using them.
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Fig. 4 Two independent simulations of the behaviour of the Repressilator

Despite having common rootes and ancestors, these approaches present clear dif-

ferences and capabilities for expressing various problems. Metabolic P systems are very

appropriate for modelling molecular interactions, exhibiting a deterministic behaviour

by making use of appropriate flux (regulation) maps that govern the associated schedul-

ing mechanisms. The expressions of these maps are obtained from other models, like

differential equations which, for instance, represent the key modelling paradigm of the

biological systems with a deterministic behaviour. One of the most relevant features of

MP systems is the log-gain theory, developed in the context of these systems [19,21,

20], by means of which MP models of biological phenomena can be deduced from suit-

able macroscopic observations of their state time series. On the other hand, stochastic

P systems use a well-established stochastic scheduling mechanism based on Gillespie

algorithm. They have been successfully involved in modelling systems with a stochastic

behaviour, especially gene regulatory networks where the level of noise is high and the

degree of complexity is significant.

Stochastic P systems have been linked to various formal approaches in software

engineering which become more intensively and extensively used in analysing the be-
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Fig. 5 Expected occupancy percentage of the promoter for different number of repressors.

haviour of biological systems. As the complexity of such biosystems is very high, var-

ious modular approaches have been provided for stochastic P systems together with

methods using evolutionary and genetic algorithms for the automated design of cer-

tain classes of P systems that suit biological systems specifications. The problem of

parameter estimation and optimisation has been also investigated.

Metabolic P systems make use of regression analysis and optimisation techniques to

set up the flux maps that support the rewriting process. They appear to be particularly

appropriate to specify the dynamics of metabolic systems, whereas stochastic P systems

represent an adequate tool for modelling hierarchical systems, especially signalling

pathways.

6 Conclusions

Deterministic metabolic and stochastic P systems both contribute to building a con-

sistent and mature research area relying on a strong theoretical basis rooted in formal

languages and automata, with successful modelling paradigms, significant links with

other computational methods, like formal verification and analysis, and a rich portfolio

of case studies.

In the near future it is expected that more extensive case studies will be devel-

oped to illustrate the benefits of using these models in systems in synthetic biology.

A deeper connection between these models and various formal verification methods

will be developed that will also emphasise the role of reverse engineering in identify-

ing properties and patterns of behaviour from various simulations. More steps will be

taken toward studying systems with noisy data or unknown behaviour where the in-

terplay between machine learning techniques, evolutionary approaches and modelling
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capabilities of various variants of P systems will show their efficiency and suitability in

specifying large biosystems.
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