14 research outputs found

    The Polygenic and Monogenic Basis of Blood Traits and Diseases

    Get PDF
    Blood cells play essential roles in human health, underpinning physiological processes such as immunity, oxygen transport, and clotting, which when perturbed cause a significant global health burden. Here we integrate data from UK Biobank and a large-scale international collaborative effort, including data for 563,085 European ancestry participants, and discover 5,106 new genetic variants independently associated with 29 blood cell phenotypes covering a range of variation impacting hematopoiesis. We holistically characterize the genetic architecture of hematopoiesis, assess the relevance of the omnigenic model to blood cell phenotypes, delineate relevant hematopoietic cell states influenced by regulatory genetic variants and gene networks, identify novel splice-altering variants mediating the associations, and assess the polygenic prediction potential for blood traits and clinical disorders at the interface of complex and Mendelian genetics. These results show the power of large-scale blood cell trait GWAS to interrogate clinically meaningful variants across a wide allelic spectrum of human variation. Analysis of blood cell traits in the UK Biobank and other cohorts illuminates the full genetic architecture of hematopoietic phenotypes, with evidence supporting the omnigenic model for complex traits and linking polygenic burden with monogenic blood diseases

    The Polygenic and Monogenic Basis of Blood Traits and Diseases

    Get PDF
    Blood cells play essential roles in human health, underpinning physiological processes such as immunity, oxygen transport, and clotting, which when perturbed cause a significant global health burden. Here we integrate data from UK Biobank and a large-scale international collaborative effort, including data for 563,085 European ancestry participants, and discover 5,106 new genetic variants independently associated with 29 blood cell phenotypes covering a range of variation impacting hematopoiesis. We holistically characterize the genetic architecture of hematopoiesis, assess the relevance of the omnigenic model to blood cell phenotypes, delineate relevant hematopoietic cell states influenced by regulatory genetic variants and gene networks, identify novel splice-altering variants mediating the associations, and assess the polygenic prediction potential for blood traits and clinical disorders at the interface of complex and Mendelian genetics. These results show the power of large-scale blood cell trait GWAS to interrogate clinically meaningful variants across a wide allelic spectrum of human variation.</p

    Trans-ethnic and Ancestry-Specific Blood-Cell Genetics in 746,667 Individuals from 5 Global Populations

    Get PDF
    Most loci identified by GWASs have been found in populations of European ancestry (EUR). In trans-ethnic meta-analyses for 15 hematological traits in 746,667 participants, including 184,535 non-EUR individuals, we identified 5,552 trait-variant associations at p &lt; 5 × 10−9, including 71 novel associations not found in EUR populations. We also identified 28 additional novel variants in ancestry-specific, non-EUR meta-analyses, including an IL7 missense variant in South Asians associated with lymphocyte count in vivo and IL-7 secretion levels in vitro. Fine-mapping prioritized variants annotated as functional and generated 95% credible sets that were 30% smaller when using the trans-ethnic as opposed to the EUR-only results. We explored the clinical significance and predictive value of trans-ethnic variants in multiple populations and compared genetic architecture and the effect of natural selection on these blood phenotypes between populations. Altogether, our results for hematological traits highlight the value of a more global representation of populations in genetic studies. Delineation of the genetic architecture of hematological traits in a multi-ethnic dataset allows identification of rare variants with strong effects specific to non-European populations and improved fine mapping of GWAS variants using the trans-ethnic approach

    Individualized multi-omic pathway deviation scores using multiple factor analysis

    No full text
    International audienceMalignant progression of normal tissue is typically driven by complex networks of somatic changes, including genetic mutations, copy number aberrations, epigenetic changes, and transcriptional reprogramming.To delineate aberrant multi-omic tumor features that correlate with clinical outcomes, we present a novelpathway-centric tool based on the multiple factor analysis framework called padma. Using a multi-omicconsensus representation, padma quantifies and characterizes individualized pathway-specific multi-omicdeviations and their underlying drivers, with respect to the sampled population. We demonstrate the utilityof padma to correlate patient outcomes with complex genetic, epigenetic, and transcriptomic perturbationsin clinically actionable pathways in breast and lung cancer

    Prenatal socioeconomic disadvantage and epigenetic alterations at birth among children born to white British and Pakistani mothers in the born in Bradford study

    No full text
    Prenatal socioeconomic disadvantage (SD) has been linked to DNA methylation (DNAm) in adulthood, but whether such epigenetic alterations are present at birth remains unclear. We carried out an epigenome-wide analysis of the association between several measures of individual- and area-level prenatal SD and DNAm assessed in neonatal cord blood via the Infinium EpicBeadChip among offspring born to mothers of White British (N = 455) and Pakistani (N = 493) origin in the Born in Bradford Study. Models were adjusted for mother’s age, ethnicity, and education level as well as cell-type fractions and then for maternal health behaviours and neonate characteristics, and last, stratified by mother’s ethnicity. P-values were corrected for multiple testing and a permutation-based approach was used to account for small cell sizes. Among all children, housing tenure (owning versus renting) as well as father’s occupation (manual versus non-manual) were each associated with DNAm of one CpG site and index of multiple deprivation (IMD) was associated with DNAm of 11 CpG sites. Among children born to White British mothers, father’s occupation (student or unemployed versus non-manual) was associated with DNAm of 1 CpG site and IMD with DNAm of 3 CpG sites. Among children born to Pakistani mothers, IMD was associated with DNAm of 1 CpG site. Associations were largely unchanged after further adjustment for maternal health behaviours or neonate characteristics and remained statistically significant. Our findings suggest that individual- and area-level prenatal SD may shape alterations to the neonatal epigenome, but associations vary across ethnic groups
    corecore