9 research outputs found
Genome sequence of the tsetse fly (Glossina morsitans):Vector of African trypanosomiasis
Tsetse flies are the sole vectors of human African trypanosomiasis throughout sub-Saharan Africa.
Both sexes of adult tsetse feed exclusively on blood and contribute to disease transmission. Notable
differences between tsetse and other disease vectors include obligate microbial symbioses, viviparous
reproduction, and lactation. Here, we describe the sequence and annotation of the 366-megabase
Glossina morsitans morsitans genome. Analysis of the genome and the 12,308 predicted
protein-encoding genes led to multiple discoveries, including chromosomal integrations of bacterial
(Wolbachia) genome sequences, a family of lactation-specific proteins, reduced complement of
host pathogen recognition proteins, and reduced olfaction/chemosensory associated genes. These
genome data provide a foundation for research into trypanosomiasis prevention and yield important
insights with broad implications for multiple aspects of tsetse biology.IS
Detecting Wahlund effects together with amplification problems : cryptic species, null alleles and short allele dominance in Glossina pallidipes populations from Tanzania
Population genetics is a convenient tool to study the population biology of non-model and hard to sample species. This is particularly true for parasites and vectors. Heterozygote deficits and/or linkage disequilibrium often occur in such studies and detecting the origin of those (Wahlund effect, reproductive system or amplification problems) is uneasy. We used new tools (correlation between the number of times a locus is found in significant linkage disequilibrium and its genetic diversity, correlations between Wright's F-IS and F-ST, F-IS and number of missing data, F-IT and allele size and standard errors comparisons) for the first time on a real data set of tsetse flies, a vector of dangerous diseases to humans and domestic animals in sub-Saharan Africa. With these new tools, and cleaning data from null allele, temporal heterogeneity and short allele dominance effects, we unveiled the coexistence of two highly divergent cryptic clades in the same sites. These results are in line with other studies suggesting that the biodiversity of many taxa still largely remain undescribed, in particular pathogenic agents and their vectors. Our results also advocate that including individuals from different cohorts tends to bias subdivision measures and that keeping loci with short allele dominance and/or too frequent missing data seriously jeopardize parameter's estimations. Finally, separated analyses of the two clades suggest very small tsetse densities and relatively large dispersal
Genetic diversity of Glossina fuscipes fuscipes along the shores of Lake Victoria in Tanzania and Kenya: implications for management
Abstract Background Tsetse flies (Diptera: Glossinidae) are sole vectors for trypanosomiasis, which affect human health and livestock productivity in Africa. Little is known about the genetic diversity of Glossina fuscipes fuscipes, which is an important species in Tanzania and Kenya. The main objective of the study was to provide baseline data to determine the genetic variability and divergence of G. f. fuscipes in the Lake Victoria basin of Tanzania and Kenya in order to guide future vector control efforts in the region. Findings Two hundred and seventy five G. f. fuscipes from 8 sites along the shores of Lake Victoria were screened for genetic polymorphisms at 19 microsatellite loci. Samples were collected from two sites in Kenya and six sites in Tanzania. Four of the Tanzanian sites were located in the Rorya district, on the eastern shores of Lake Victoria, while the other two sites were from Ukerewe and Bukoba districts from the southern and western Lake Victoria shores, respectively. Four genetically distinct allopatric clusters were revealed by microsatellite analysis, which sorted the sampling sites according to geography, with sites separated by as little as ~65Â km belonging to distinct genetic clusters, while samples located within ~35Â km from each other group in the same cluster. Conclusion Our results suggest that there is ongoing genetic admixture within sampling sites located ~35Â km from each other, while sites located ~65Â km apart are genetically isolated from each other. Similar patterns emerged from a parallel study on G. f. fuscipes analyzed from the Lake Victoria Uganda shores. From a control perspective these results suggest that for sites within the same genetic cluster, control efforts should be carried out in a coordinated fashion in order to avoid re-invasions. Future work should focus on better quantifying the extent and spatial patterns of the observed genetic discontinuities of the G. f. fuscipes populations along the Tanzanian shores. This will aid in their control by providing guidelines on the geographical extent of the area to be treated at the same time
Enhancing vector refractoriness to trypanosome infection : achievements, challenges and perspectives
With the absence of effective prophylactic vaccines and drugs against African trypanosomosis, control of this group of zoonotic neglected tropical diseases depends the control of the tsetse fly vector. When applied in an area-wide insect pest management approach, the sterile insect technique (SIT) is effective in eliminating single tsetse species from isolated populations. The need to enhance the effectiveness of SIT led to the concept of investigating tsetse-trypanosome interactions by a consortium of researchers in a five-year (2013-2018) Coordinated Research Project (CRP) organized by the Joint Division of FAO/IAEA. The goal of this CRP was to elucidate tsetse-symbiome-pathogen molecular interactions to improve SIT and SIT-compatible interventions for trypanosomoses control by enhancing vector refractoriness. This would allow extension of SIT into areas with potential disease transmission. This paper highlights the CRP's major achievements and discusses the science-based perspectives for successful mitigation or eradication of African trypanosomosis.</p
Genome Sequence of the Tsetse Fly (Glossina morsitans): Vector of African Trypanosomiasis
Tsetse flies are the sole vectors of human African trypanosomiasis throughout sub-Saharan Africa. Both sexes of adult tsetse feed exclusively on blood and contribute to disease transmission. Notable differences between tsetse and other disease vectors include obligate microbial symbioses, viviparous reproduction, and lactation. Here, we describe the sequence and annotation of the 366-megabase Glossina morsitans morsitans genome. Analysis of the genome and the 12,308 predicted protein–encoding genes led to multiple discoveries, including chromosomal integrations of bacterial (Wolbachia) genome sequences, a family of lactation-specific proteins, reduced complement of
host pathogen recognition proteins, and reduced olfaction/chemosensory associated genes. These genome data provide a foundation for research into trypanosomiasis prevention and yield important insights with broad implications for multiple aspects of tsetse biology