313 research outputs found

    Undulator radiation driven by laser-wakefield accelerator electron beams

    Get PDF
    The Advanced Laser-Plasma High-Energy Accelerators towards X-rays (ALPHA-X) programme is developing laserplasma accelerators for the production of ultra-short electron bunches with subsequent generation of coherent, bright, short-wavelength radiation pulses. The new Scottish Centre for the Application of Plasma-based Accelerators (SCAPA) will develop a wide range of applications utilising such light sources. Electron bunches can be propagated through a magnetic undulator with the aim of generating fully coherent free-electron laser (FEL) radiation in the ultra-violet and Xrays spectral ranges. Demonstration experiments producing spontaneous undulator radiation have been conducted at visible and extreme ultra-violet wavelengths but it is an on-going challenge to generate and maintain electron bunches of sufficient quality in order to stimulate FEL behaviour. In the ALPHA-X beam line experiments, a Ti:sapphire femtosecond laser system with peak power 20 TW has been used to generate electron bunches of energy 80-150 MeV in a 2 mm gas jet laser-plasma wakefield accelerator and these bunches have been transported through a 100 period planar undulator. High peak brilliance, narrow band spontaneous radiation pulses in the vacuum ultra-violet wavelength range have been generated. Analysis is provided with respect to the magnetic quadrupole beam transport system and subsequent effect on beam emittance and duration. Requirements for coherent spontaneous emission and FEL operation are presented

    An ultrashort pulse ultra-violet radiation undulator source driven by a laser plasma wakefield accelerator

    Get PDF
    Narrow band undulator radiation tuneable over the wavelength range of 150–260 nm has been produced by short electron bunches from a 2 mm long laser plasma wakefield accelerator based on a 20 TW femtosecond laser system. The number of photons measured is up to 9 × 106 per shot for a 100 period undulator, with a mean peak brilliance of 1 × 1018 photons/s/mrad2/mm2/0.1% bandwidth. Simulations estimate that the driving electron bunch r.m.s. duration is as short as 3 fs when the electron beam has energy of 120–130 MeV with the radiation pulse duration in the range of 50–100 fs

    The effects of administering different metaphylactic antimicrobials on growth performance and health outcomes of high-risk, newly received feedlot steers

    Get PDF
    Bovine respiratory disease (BRD) is the primary animal health concern facing feedlot producers. Many antimicrobial mitigation strategies are available, but few studies have compared feedlot performance during both the receiving and finishing periods following application of different antimicrobials used as metaphylaxis at arrival. The objective of this study was to compare antimicrobial metaphylaxis methods on clinical health and growth performance across both the receiving and finishing periods. A total of 238 multiple-sourced steers in two source blocks were used in a generalized complete block design. The four treatments included: 1) a negative control, 5 mL of sterile saline injected subcutaneously (CON); 2) subcutaneous administration of florfenicol at 40 mg/kg of BW (NUF); 3) subcutaneous administration of ceftiofur in the posterior aspect of the ear at 6.6 mg/kg of BW (EXC); and 4) subcutaneous administration of tulathromycin at 2.5 mg/kg of BW (DRA). The morbidity rate for the first treatment of BRD was decreased for the DRA and EXC treatments compared to CON and NUF (P \u3c 0.01). Additionally, average daily gain (ADG), dry matter intake (DMI), and gain-to-feed (G:F) were greater (P ≤ 0.02) in the DRA treatment during the receiving period compared to all other treatments. The ADG was also greater (P \u3c 0.05) for EXC than the CON treatment throughout the finishing period. Nonetheless, other growth performance variables did not differ among metaphylactic treatments during the finishing period (P ≥ 0.14). Likewise, no differences in carcass characteristics or liver abscess score were observed (P ≥ 0.18). All complete blood count (CBC) variables were affected by day (P ≤ 0.01) except mean corpuscular hemoglobin concentration (P = 0.29). Treatment × time interactions were observed for platelet count, white blood cell (WBC) count, monocyte count and percentage, and lymphocyte percentage (P ≤ 0.03). However, there were no observed hematological variables that differed among treatment (P ≥ 0.10). The results indicate that some commercially available antimicrobials labeled for metaphylactic use are more efficacious than others in decreasing morbidity rate

    Laser-plasma-based space radiation reproduction in the laboratory

    Get PDF
    Space radiation is a great danger to electronics and astronauts onboard space vessels. The spectral flux of space electrons, protons and ions for example in the radiation belts is inherently broadband, but this is a feature hard to mimic with conventional radiation sources. Using laser-plasma-accelerators, we reproduced relativistic, broadband radiation belt flux in the laboratory, and used this man-made space radiation to test the radiation hardness of space electronics. Such close mimicking of space radiation in the lab builds on the inherent ability of laser-plasma-accelerators to directly produce broadband Maxwellian-type particle flux, akin to conditions in space. In combination with the established sources, utilisation of the growing number of ever more potent laser-plasma-accelerator facilities worldwide as complementary space radiation sources can help alleviate the shortage of available beamtime and may allow for development of advanced test procedures, paving the way towards higher reliability of space missions

    Metaphylactic antimicrobial effects on occurrences of antimicrobial resistance in \u3ci\u3eSalmonella enterica, Escherichia coli\u3c/i\u3e and \u3ci\u3eEnterococcus\u3c/i\u3e spp. measured longitudinally from feedlot arrival to harvest in high-risk beef cattle

    Get PDF
    Aims: Our objective was to determine how injectable antimicrobials affected populations of Salmonella enterica, Escherichia coli and Enterococcus spp. in feedlot cattle. Methods and Results: Two arrival date blocks of high-risk crossbred beef cattle (n = 249; mean BW = 244 kg) were randomly assigned one of four antimicrobial treatments administered on day 0: sterile saline control (CON), tulathromycin (TUL), ceftiofur (CEF) or florfenicol (FLR). Faecal samples were collected on days 0, 28, 56, 112, 182 and study end (day 252 for block 1 and day 242 for block 2). Hide swabs and subiliac lymph nodes were collected the day before and the day of harvest. Samples were cultured for antimicrobial-resistant Salmonella, Escherichia coli and Enterococcus spp. The effect of treatment varied by day across all targeted bacterial populations (p ≤ 0.01) except total E. coli. Total E. coli counts were greatest on days 112, 182 and study end (p ≤ 0.01). Tulathromycin resulted in greater counts and prevalence of Salmonella from faeces than CON at study end (p ≤ 0.01). Tulathromycin and CEF yielded greater Salmonella hide prevalence and greater counts of 128ERYR E. coli at study end than CON (p ≤ 0.01). No faecal Salmonella resistant to tetracyclines or third-generation cephalosporins were detected. Ceftiofur was associated with greater counts of 8ERYR Enterococcus spp. at study end (p ≤ 0.03). By the day before harvest, antimicrobial use did not increase prevalence or counts for all other bacterial populations compared with CON (p ≥ 0.13). Conclusions: Antimicrobial resistance (AMR) in feedlot cattle is not caused solely by using a metaphylactic antimicrobial on arrival, but more likely a multitude of environmental and management factors

    PDE4 inhibition enhances hippocampal synaptic plasticity in vivo and rescues MK801-induced impairment of long-term potentiation and object recognition memory in an animal model of psychosis

    Get PDF
    Inhibition of phosphodiesterase type 4 (PDE4) by rolipram (4-(3-(cyclopentyloxy)-4-methoxyphenyl)-pyrrolidin-2-one) has been the focus of many behavioral and molecular studies in the recent years. Rolipram exhibits memory-enhancing effects in rodents. In vitro studies have shown that long-term potentiation (LTP), which may comprise a cellular substrate for learning, is also enhanced by rolipram. However, effects have not been assessed in vivo. Rolipram has antipsychotic properties. Psychosis affects cognition and in animal models of psychosis LTP is impaired. In this study, we investigated if PDE4 inhibition improves LTP in healthy animals in vivo and if PDE4 inhibition rescues impaired LTP and prevents object recognition memory deficits in an animal model of psychosis. Recordings were made from the hippocampus of adult, freely behaving Wistar rats. Thirty minutes after treatment with rolipram or vehicle, a tetanus was applied to the medial perforant path to elicit short-term potentiation (STP) in the dentate gyrus. At this time-point, radioimmunoassay revealed that rolipram significantly elevated cyclic adenosine monophosphate levels in the dorsal hippocampus, in line with reports by others that rolipram mediates decreased PDE4 activity. In healthy animals, both intracerebroventricular and subcutaneous treatment with rolipram facilitated STP into LTP, suggesting that PDE4 inhibition may have a permissive role in plasticity mechanisms that are relevant for learning and memory. One week after a single systemic treatment with the irreversible N-methyl--aspartate antagonist, MK801, LTP and object recognition memory were significantly impaired, but could be rescued by PDE4 inhibition. These data suggest that the relief of cognitive disturbances in psychosis models by rolipram may be mediated in part by a rescue of hippocampal LTP

    Generation and acceleration of electron bunches from a plasma photocathode

    Get PDF
    Plasma waves generated in the wake of intense, relativistic laser1,2 or particle beams3,4 can accelerate electron bunches to gigaelectronvolt energies in centimetre-scale distances. This allows the realization of compact accelerators with emerging applications ranging from modern light sources such as the free-electron laser to energy frontier lepton colliders. In a plasma wakefield accelerator, such multi-gigavolt-per-metre wakefields can accelerate witness electron bunches that are either externally injected5,6 or captured from the background plasma7,8. Here we demonstrate optically triggered injection9–11 and acceleration of electron bunches, generated in a multi-component hydrogen and helium plasma employing a spatially aligned and synchronized laser pulse. This ‘plasma photocathode’ decouples injection from wake excitation by liberating tunnel-ionized helium electrons directly inside the plasma cavity, where these cold electrons are then rapidly boosted to relativistic velocities. The injection regime can be accessed via optical11 density down-ramp injection12–16 and is an important step towards the generation of electron beams with unprecedented low transverse emittance, high current and 6D-brightness17. This experimental path opens numerous prospects for transformative plasma wakefield accelerator applications based on ultrahigh-brightness beams

    EMITTANCE AND ENERGY SPREAD MEASUREMENTS OF RELATIVISTICS ELECTRONS FROM LASER-DRIVEN ACCELERATOR

    Get PDF
    Abstract In this paper, we present a single-shot transverse emittance measurement for 125 ± 3 MeV electron beam using pepper-pot technique. A normalised transverse emittance as low as 1.1 ± 0.1 -mm-mrad was measured using this method. Considering 60 consecutive shots, an average normalised emittance of ε rms,x,y =2.2 ± 0.7, 2.3 ± 0.6 -mm-mrad was obtained, which is comparable to a conventional linear accelerator. We also obtained high energy monoenergetic electron beam with relative energy spread less than 1%. The measured transverse emittance characterises the quality of an electron beam generated from laser-driven accelerator. Brightness, parallelism and focusability are all functions of the emittance. The low emittance and energy spread indicates that this type of accelerator is suitable for compact free electron laser driver

    A Model of Late Long-Term Potentiation Simulates Aspects of Memory Maintenance

    Get PDF
    Late long-term potentiation (L-LTP) appears essential for the formation of long-term memory, with memories at least partly encoded by patterns of strengthened synapses. How memories are preserved for months or years, despite molecular turnover, is not well understood. Ongoing recurrent neuronal activity, during memory recall or during sleep, has been hypothesized to preferentially potentiate strong synapses, preserving memories. This hypothesis has not been evaluated in the context of a mathematical model representing biochemical pathways important for L-LTP. I incorporated ongoing activity into two such models: a reduced model that represents some of the essential biochemical processes, and a more detailed published model. The reduced model represents synaptic tagging and gene induction intuitively, and the detailed model adds activation of essential kinases by Ca. Ongoing activity was modeled as continual brief elevations of [Ca]. In each model, two stable states of synaptic weight resulted. Positive feedback between synaptic weight and the amplitude of ongoing Ca transients underlies this bistability. A tetanic or theta-burst stimulus switches a model synapse from a low weight to a high weight stabilized by ongoing activity. Bistability was robust to parameter variations. Simulations illustrated that prolonged decreased activity reset synapses to low weights, suggesting a plausible forgetting mechanism. However, episodic activity with shorter inactive intervals maintained strong synapses. Both models support experimental predictions. Tests of these predictions are expected to further understanding of how neuronal activity is coupled to maintenance of synaptic strength.Comment: Accepted to PLoS One. 8 figures at en

    An overview of using small punch testing for mechanical characterization of MCrAlY bond coats

    Get PDF
    Considerable work has been carried out on overlay bond coats in the past several decades because of its excellent oxidation resistance and good adhesion between the top coat and superalloy substrate in the thermal barrier coating systems. Previous studies mainly focus on oxidation and diffusion behavior of these coatings. However, the mechanical behavior and the dominant fracture and deformation mechanisms of the overlay bond coats at different temperatures are still under investigation. Direct comparison between individual studies has not yet been achieved due to the fragmentary data on deposition processes, microstructure and, more apparently, the difficulty in accurately measuring the mechanical properties of thin coatings. One of the miniaturized specimen testing methods, small punch testing, appears to have the potential to provide such mechanical property measurements for thin coatings. The purpose of this paper is to give an overview of using small punch testing to evaluate material properties and to summarize the available mechanical properties that include the ductile-to-brittle transition and creep of MCrAlY bond coat alloys, in an attempt to understand the mechanical behavior of MCrAlY coatings over a broad temperature range
    corecore