213 research outputs found

    Data-driven sparse estimation of nonlinear fluid flows

    Get PDF
    Estimation of full state fluid flow from limited observations is central for many practical applications in physics and engineering science. Fluid flows are manifestations of nonlinear multiscale partial differential equations (PDE) dynamical systems with inherent scale separation. Although the Navier-stokes equations can successfully model fluid flows, there are only limited cases of flows for which it is feasible to acquire exact analytical or numerical solutions. For many real-life fluid flow problems, extremely complex boundary conditions limit accurate modeling and simulations. In such situations, data from experiments or field measurements represents the absolute truth and very few in numbers thus limiting the potential of in-depth analysis. Consequently different data-driven techniques have been critical in active research in recent days. The ability to reconstruct important fluid flows from limited data is critical in applications extending from active flow control to as diverse as cardiac blood flow modeling and climate science. In this work, we investigated both (1) linear estimation method by leveraging data specific proper orthogonal decomposition (POD) technique, and (2) nonlinear estimation method on the ground of machine learning using deep neural network (DNN) algorithm. Given that sparse reconstruction is an inherently ill-posed problem, to generate well-posedness our linear sparse estimation (LSE) approach encodes the physics into the underlying sparse basis obtained from POD. On the other hand, for nonlinear sparse estimation (NLSE) we tried to find an optimal neural network model working over different ranges of hyperparameters through a systematic implementation. Our NLSE approach learns an end-to-end mapping between the sensor measurements and the high dimensional fluid flow field. We demonstrate the performance of both approaches for low and high dimensional examples in fluid mechanics. We also assess the interplay between sensor quantity and their placements introducing some greedy-smart sensor placement methods such as Discrete Empirical Interpolation Method (DEIM), QR-pivoting, etc. The LSE method needs the knowledge of low dimensional sparse basis to be known a priori, whereas the NLSE requires no prior knowledge to be available. The estimation algorithm of NLSE is purely data-driven with a comparable level of performance. To make our neural network optimization more robust we implemented Latin Hypercube Sampling (LHS) algorithm to ensure that each hyperparameter sample has all portions of its distribution in the considered range of analysis instead of sampling them randomly. Throughout the thesis, we demonstrate a comparison of each approach taken into consideration to conclude on their performances. A special focus has been placed to learn high dimensional multiscale system such as the near-wall turbulent channel flow using the NLSE method to evaluate the advantages and limitations of the nonlinear approach in comparison to the traditional linear estimation

    Optimization of enzymatic pretreatment process for enhanced biogas production from palm oil mill effluent

    Get PDF
    Anaerobic digestion (AD) of palm oil mill effluent (POME) for biogas production by four step processes such as hydrolysis, acidogenesis, acetogenesis and methanogenesis in which hydrolysis is pondered as a rate limiting step. To achieve high yield of biogas in the AD, enzymatic hydrolysis as the pretreatment method was applied to overcome the current limitation of the existing plants. Therefore, an optimization study was carried out to evaluate AD performance for biogas production. Among the parameters, three factors i.e. cellulase enzyme dose, pH and total suspended solids (TSS) were studied by the face-centered central composite design (FCCCD) under the response surface methodology (RSM) based on lipase pre-treated POME. The results showed that the maximum of 835 ml biogas was obtained with 85% COD removal from 50 ml of POME substrate after 10 days of operation while 290 ml biogas produced from control (without pretreatment). The optimum process conditions were at pH 5 and TSS of 1.5% and enzyme loading 200 CMC/ml. High coefficient of R2 value of 0.994 indicated the satisfactory fit of the model

    Use of Wireless Sensor and Microcontroller to Develop Water-level Monitoring System

    Get PDF
    This paper presents the design and development process of Wireless Data Acquisition System (WiDAS) which is a multi-sensor system for water level monitoring. It also consists of a microcontroller (ATMega8L), a data display device and an ultrasonic distance sensor (Parallax Ping). This wireless based acquisition system can communicate through RF module (Tx-Rx) from the measurement sources, such as sensors and devices as digital or analog values over a period of time. The developed system has the option to store the data in the computer memory. It was tested in real time and showed continuous and correct data. The developed system is consisting of a number of features, such as low energy consumption, easy to operate and well-built invulnerability, which cangive successful results to measure the water level. Finally, its flexibility facilitates an extensive application span for self-directed data collection with trustworthy transmission in few sparse points over huge areas

    Numerical simulation of periodic MHD casson nanofluid flow through porous stretching sheet

    Get PDF
    The perspective of this paper is to characterize a Casson type of Non-Newtonian fluid flow through heat as well as mass conduction towards a stretching surface with thermophoresis and radiation absorption impacts in association with periodic hydromagnetic effect. Here heat absorption is also integrated with the heat absorbing parameter. A time dependent fundamental set of equations, i.e. momentum, energy and concentration have been established to discuss the fluid flow system. Explicit finite difference technique is occupied here by executing a procedure in Compaq Visual Fortran 6.6a to elucidate the mathematical model of liquid flow. The stability and convergence inspection has been accomplished. It has observed that the present work converged at, Pr ≥ 0.447 indicates the value of Prandtl number and Le ≥ 0.163 indicates the value of Lewis number. Impact of useful physical parameters has been illustrated graphically on various flow fields. It has inspected that the periodic magnetic field has helped to increase the interaction of the nanoparticles in the velocity field significantly. The field has been depicted in a vibrating form which is also done newly in this work. Subsequently, the Lorentz force has also represented a great impact in the updated visualization (streamlines and isotherms) of the flow field. The respective fields appeared with more wave for the larger values of magnetic parameter. These results help to visualize a theoretical idea of the effect of modern electromagnetic induction use in industry instead of traditional energy sources. Moreover, it has a great application in lung and prostate cancer therapy

    Psychometric validation of the Bangla fear of COVID-19 Scale: confirmatory factor analysis and Rasch analysis

    Get PDF
    The recently developed Fear of COVID-19 Scale (FCV-19S) is a seven-item uni-dimensional scale that assesses the severity of fears of COVID-19. Given the rapid increase of COVID-19 cases in Bangladesh, we aimed to translate and validate the FCV-19S in Bangla. The forward-backward translation method was used to translate the English version of the questionnaire into Bangla. The reliability and validity properties of the Bangla FCV-19S were rigorously psychometrically evaluated (utilizing both confirmatory factor analysis and Rasch analysis) in relation to socio-demographic variables, national lockdown variables, and response to the Bangla Health Patient Questionnaire. The sample comprised 8550 Bangladeshi participants. The Cronbach α value for the Bangla FCV-19S was 0.871 indicating very good internal reliability. The results of the confirmatory factor analysis showed that the uni-dimensional factor structure of the FCV-19S fitted well with the data. The FCV-19S was significantly correlated with the nine-item Bangla Patient Health Questionnaire (PHQ-90) (r = 0.406,

    Factors affecting the micronutrient status of adolescent girls living in complex agro-aquatic ecological zones of Bangladesh

    Get PDF
    Acknowledgements The study was conducted in collaboration with Noakhali Science and Technology University (NSTU), icddr,b, University of Stirling, University of Copenhagen, University of Aberdeen, and the University of Glasgow. We acknowledge with gratitude the commitment of all investigators from all of the collaborating institutes. icddr,b is also grateful to the Governments of Bangladesh, Canada, Sweden, and the UK for providing core support. Funding This work is funded through the Innovative Methods and Metrics for Agriculture and Nutrition Action (IMMANA) programme, led by the London School of Hygiene & Tropical Medicine (LSHTM). IMMANA is co-funded with UK Aid from the UK government and by the Bill & Melinda Gates Foundation INV-002962 / OPP1211308. Under the grant conditions of the Foundation, a Creative Commons Attribution 4.0 Generic License has already been assigned to the Author Accepted Manuscript version that might arise from this submission.Peer reviewedPublisher PD

    Predicting the environmental suitability for onchocerciasis in Africa as an aid to elimination planning

    Get PDF
    Recent evidence suggests that, in some foci, elimination of onchocerciasis from Africa may be feasible with mass drug administration (MDA) of ivermectin. To achieve continental elimination of transmission, mapping surveys will need to be conducted across all implementation units (IUs) for which endemicity status is currently unknown. Using boosted regression tree models with optimised hyperparameter selection, we estimated environmental suitability for onchocerciasis at the 5 × 5-km resolution across Africa. In order to classify IUs that include locations that are environmentally suitable, we used receiver operating characteristic (ROC) analysis to identify an optimal threshold for suitability concordant with locations where onchocerciasis has been previously detected. This threshold value was then used to classify IUs (more suitable or less suitable) based on the location within the IU with the largest mean prediction. Mean estimates of environmental suitability suggest large areas across West and Central Africa, as well as focal areas of East Africa, are suitable for onchocerciasis transmission, consistent with the presence of current control and elimination of transmission efforts. The ROC analysis identified a mean environmental suitability index of 0.71 as a threshold to classify based on the location with the largest mean prediction within the IU. Of the IUs considered for mapping surveys, 50.2% exceed this threshold for suitability in at least one 5×5-km location. The formidable scale of data collection required to map onchocerciasis endemicity across the African continent presents an opportunity to use spatial data to identify areas likely to be suitable for onchocerciasis transmission. National onchocerciasis elimination programmes may wish to consider prioritising these IUs for mapping surveys as human resources, laboratory capacity, and programmatic schedules may constrain survey implementation, and possibly delaying MDA initiation in areas that would ultimately qualify

    Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background Diabetes is one of the leading causes of death and disability worldwide, and affects people regardless of country, age group, or sex. Using the most recent evidentiary and analytical framework from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD), we produced location-specific, age-specific, and sex-specific estimates of diabetes prevalence and burden from 1990 to 2021, the proportion of type 1 and type 2 diabetes in 2021, the proportion of the type 2 diabetes burden attributable to selected risk factors, and projections of diabetes prevalence through 2050. Methods Estimates of diabetes prevalence and burden were computed in 204 countries and territories, across 25 age groups, for males and females separately and combined; these estimates comprised lost years of healthy life, measured in disability-adjusted life-years (DALYs; defined as the sum of years of life lost [YLLs] and years lived with disability [YLDs]). We used the Cause of Death Ensemble model (CODEm) approach to estimate deaths due to diabetes, incorporating 25 666 location-years of data from vital registration and verbal autopsy reports in separate total (including both type 1 and type 2 diabetes) and type-specific models. Other forms of diabetes, including gestational and monogenic diabetes, were not explicitly modelled. Total and type 1 diabetes prevalence was estimated by use of a Bayesian meta-regression modelling tool, DisMod-MR 2.1, to analyse 1527 location-years of data from the scientific literature, survey microdata, and insurance claims; type 2 diabetes estimates were computed by subtracting type 1 diabetes from total estimates. Mortality and prevalence estimates, along with standard life expectancy and disability weights, were used to calculate YLLs, YLDs, and DALYs. When appropriate, we extrapolated estimates to a hypothetical population with a standardised age structure to allow comparison in populations with different age structures. We used the comparative risk assessment framework to estimate the risk-attributable type 2 diabetes burden for 16 risk factors falling under risk categories including environmental and occupational factors, tobacco use, high alcohol use, high body-mass index (BMI), dietary factors, and low physical activity. Using a regression framework, we forecast type 1 and type 2 diabetes prevalence through 2050 with Socio-demographic Index (SDI) and high BMI as predictors, respectively. Findings In 2021, there were 529 million (95% uncertainty interval [UI] 500–564) people living with diabetes worldwide, and the global age-standardised total diabetes prevalence was 6·1% (5·8–6·5). At the super-region level, the highest age-standardised rates were observed in north Africa and the Middle East (9·3% [8·7–9·9]) and, at the regional level, in Oceania (12·3% [11·5–13·0]). Nationally, Qatar had the world’s highest age-specific prevalence of diabetes, at 76·1% (73·1–79·5) in individuals aged 75–79 years. Total diabetes prevalence—especially among older adults—primarily reflects type 2 diabetes, which in 2021 accounted for 96·0% (95·1–96·8) of diabetes cases and 95·4% (94·9–95·9) of diabetes DALYs worldwide. In 2021, 52·2% (25·5–71·8) of global type 2 diabetes DALYs were attributable to high BMI. The contribution of high BMI to type 2 diabetes DALYs rose by 24·3% (18·5–30·4) worldwide between 1990 and 2021. By 2050, more than 1·31 billion (1·22–1·39) people are projected to have diabetes, with expected age-standardised total diabetes prevalence rates greater than 10% in two super-regions: 16·8% (16·1–17·6) in north Africa and the Middle East and 11·3% (10·8–11·9) in Latin America and Caribbean. By 2050, 89 (43·6%) of 204 countries and territories will have an age-standardised rate greater than 10%.Peer ReviewedPostprint (published version

    Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study

    Get PDF
    Background: Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally. Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income countries globally, and identified factors associated with mortality. // Methods: We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis, exomphalos, anorectal malformation, and Hirschsprung's disease. Recruitment was of consecutive patients for a minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause, in-hospital mortality for all conditions combined and each condition individually, stratified by country income status. We did a complete case analysis. // Findings: We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal malformation, and 517 with Hirschsprung's disease) from 264 hospitals (89 in high-income countries, 166 in middle-income countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male. Median gestational age at birth was 38 weeks (IQR 36–39) and median bodyweight at presentation was 2·8 kg (2·3–3·3). Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups). Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in low-income countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries; p≤0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88–4·11], p<0·0001; middle-income vs high-income countries, 2·11 [1·59–2·79], p<0·0001), sepsis at presentation (1·20 [1·04–1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention (ASA 4–5 vs ASA 1–2, 1·82 [1·40–2·35], p<0·0001; ASA 3 vs ASA 1–2, 1·58, [1·30–1·92], p<0·0001]), surgical safety checklist not used (1·39 [1·02–1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed (ventilation 1·96, [1·41–2·71], p=0·0001; parenteral nutrition 1·35, [1·05–1·74], p=0·018). Administration of parenteral nutrition (0·61, [0·47–0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65 [0·50–0·86], p=0·0024) or percutaneous central line (0·69 [0·48–1·00], p=0·049) were associated with lower mortality. // Interpretation: Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between low-income, middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger than 5 years by 2030
    corecore