106 research outputs found

    Identification of hormonogenic tyrosines in fragment 1218-1591 of bovine thyroglobulin by mass spectrometry. Hormonogenic acceptor TYR-12donor TYR-1375.

    Get PDF
    A fragment of bovine thyroglobulin encompassing residues 1218-1591 was prepared by limited proteolysis with thermolysin and continuous-elution polyacrylamide gel electrophoresis in SDS. The reduced and carboxymethylated peptide was digested with endoproteinase Asp-N and fractionated by reverse-phase high performance liquid chromatography. The fractions were analyzed by electrospray and fast atom bombardment mass spectrometry in combination with Edman degradation. The post-translational modifications of all seven tyrosyl residues of the fragment were characterized at an unprecedented level of definition. The analysis revealed the formation of: 1) monoiodotyrosine from tyrosine 1234; 2) monoiodotyrosine, diiodotyrosine, triiodothyronine (T3), and tetraiodothyronine (thyroxine, T4) from tyrosine 1291; and 3) monoiodotyrosine, diiodotyrosine, and dehydroalanine from tyrosine 1375. Iodothyronine formation from tyrosine 1291 accounted for 10% of total T4 of thyroglobulin (0.30 mol of T4/mol of 660-kDa thyroglobulin), and 8% of total T3 (0.08 mol of T3/mol of thyroglobulin). This is the first documentation of the hormonogenic nature of tyrosine 1291 of bovine thyroglobulin, as thyroxine formation at a corresponding site was so far reported only in rabbit, guinea pig, and turtle thyroglobulin. This is also the first direct identification of tyrosine 1375 of bovine thyroglobulin as a donor residue. It is suggested that tyrosyl residues 1291 and 1375 may support together the function of an independent hormonogenic domain in the mid-portion of the polypeptide chain of thyroglobulin

    Quantification of Protein "Biomarkers" in Wheat-Based Food Systems: Dealing with Process-Related Issues

    Get PDF
    Selected food proteins may represent suitable markers for assessing either the presence/absence of specific food ingredients or the type and intensity of food processes. A fundamental step in the quantification of any protein marker is choosing a proper protocol for solubilizing the protein of interest. This step is particularly critical in the case of solid foods and when the protein analyte is prone to undergo intermolecular disulfide exchange reactions with itself or with other protein components in the system as a consequence of process-induced unfolding. In this frame, gluten-based systems represent matrices where a protein network is present and the biomarker proteins may be either linked to other components of the network or trapped into the network itself. The protein biomarkers considered here were wheat gluten toxic sequences for coeliac (QQPFP, R5), wheat germ agglutinin (WGA), and chicken egg ovalbumin (OVA). These proteins were considered here in the frame of three different cases dealing with processes different in nature and severity. Results from individual cases are commented as for: (1) the molecular basis of the observed behavior of the protein; (2) the design of procedure aimed at improving the recovery of the protein biomarker in a form suitable for reliable identification and quantification; (3) a critical analysis of the difficulties associated with the plain transfer of an analytical protocol from one product/process to another. Proper respect for the indications provided by the studies exemplified in this study may prevent coarse errors in assays and vane attempts at estimating the efficacy of a given treatment under a given set of conditions. The cases presented here also indicate that recovery of a protein analyte often does not depend in a linear fashion on the intensity of the applied treatment, so that caution must be exerted when attributing predictive value to the results of a particular study

    Pasta fortified with C-glycosides-rich carob (Ceratonia siliqua L.) seed germ flour: Inhibitory activity against carbohydrate digesting enzymes

    Get PDF
    Carob (Ceratonia siliqua L.) seed germ flour (SGF) is a by-product resulting from the extractionextraction of locust bean gum (E410), which is a texturing and thickening ingredient used for food, pharmaceutical and cosmetic preparations. SGF is a protein-rich edible matrix and contains relatively high amounts of apigenin 6,8-C-di- and poly-glycosylated derivatives. In this work, we prepared durum wheat pasta containing 5 and 10 % (w/w) of SGF and carried out inhibition assays against type-2 diabetes relevant carbohydrate hydrolysing enzymes, namely porcine pancreatic α-amylase and α-glycosidases from jejunal brush border membranes. Nearly 70–80% of the SGF flavonoids were retained in the pasta after cooking in boiling water. Extracts from cooked pasta fortified with 5 or 10% SGF inhibited either α-amylase by 53% and 74% or α-glycosidases by 62 and 69%, respectively. The release of reducing sugars from starch was delayed in SGF-containing pasta compared to the full-wheat counterpart, as assessed by simulated oral-gastric-duodenal digestion. By effect of starch degradation, the SGF flavonoids were discharged in the water phase of the chyme, supporting a possible inhibitory activity against both duodenal α-amylase and small intestinal α-glycosidases in vivo. SGF is a promising functional ingredient obtained from an industrial by-product for producing cereal-based foods with reduced glycaemic index.Fil: Siano, Francesco. Consiglio Nazionale delle Ricerche; ItaliaFil: Mamone, Gianfranco. Consiglio Nazionale delle Ricerche; ItaliaFil: Vasca, Ermanno. Universita di Salerno; ItaliaFil: Puppo, Maria Cecilia. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; ArgentinaFil: Picariello, Gianluca. Consiglio Nazionale delle Ricerche; Itali

    Differential Protein Expression in Berry Skin from Red Grapes with Varying Hybrid Character

    Get PDF
    Protein expression from the berry skin of four red grape biotypes with varying hybrid character was compared at a proteome-wide level to identify the metabolic pathways underlying divergent patterns of secondary metabolites. A bottom-up shotgun proteomics approach with label-free quantification and MaxQuant-assisted computational analysis was applied. Red grapes were from (i) purebred Vitis vinifera (Aglianico cv.); (ii) V. vinifera (local Sciascinoso cv.) grafted onto an American rootstock; (iii) interspecific hybrid (V. vinifera × V. labrusca, Isabel), and (iv) uncharacterized grape genotype with hybrid lineage, producing relatively abundant anthocyanidin 3,5-O-diglucosides. Proteomics supported the differences between hybrids and purebred V. vinifera grapes, consistently with distinct phenotypic metabolite assets. Methanol O-anthraniloyltransferase, which catalyses the synthesis of methyl anthranilate, primarily responsible for the "foxy" odour, was exclusive of the Isabel hybrid grape. Most of the proteins with different expression profiles converged into coordinated biosynthetic networks of primary metabolism, while many possible enzymes of secondary metabolism pathways, including 5-glucosyltransferases expected for hybrid grapes, remained unassigned due to incomplete protein annotation for the Vitis genus. Minor differences of protein expression distinguished V. vinifera scion grafted onto American rootstocks from purebred V. vinifera skin grapes, supporting a slight influence of the rootstock on the grape metabolism

    Excretion of dietary cow’s milk derived peptides into breast milk

    Get PDF
    Nanoflow-HPLC-tandem mass spectrometry (MS/MS) was used to analyze the peptide fraction of breast milk samples collected from a single non-atopic donor on different days (ten samples) after receiving an oral load of cow’s milk (by drinking 200 mL of bovine milk). In addition, breast milk was sampled from the same lactating mother over a 6-h period at 5 time points after drinking cow’s milk. We aimed to trace the intra-individual variability and to define a time profile of the excretion of dietary peptides into breast milk. Overall, 21 peptides exclusively originating from both bovine caseins and whey proteins with no match within the human milk proteome were identified in the breast milk samples. These peptides were missing in the breast milk obtained from the mother after a prolonged milk- and dairy-free diet (three samples). The time course of cow’s milk-derived β-Lg f(125-135) and β-casein f(81-92) in breast milk

    Analytical and functional approaches to assess the immunogenicity of gluten proteins

    Get PDF
    Gluten proteins are the causative agents of celiac disease (CD), a lifelong and worldwide spread food intolerance, characterized by an autoimmune enteropathy. Gluten is a complex mixture of high homologous water-insoluble proteins, characterized by a high content of glutamine and proline amino acids that confers a marked resistance to degradation by gastrointestinal proteases. As a consequence of that, large peptides are released in the gut lumen with the potential to activate inflammatory T cells, in CD predisposed individuals. To date, several strategies aimed to detoxify gluten proteins or to develop immunomodulatory drugs to recover immune tolerance to gluten are under investigation. This review overviews the state of art of both analytical and functional methods currently used to assess the immunogenicity potential of gluten proteins from different cereal sources, including native raw seed flours and complex food products, as well as drug-treated samples. The analytical design to assess the content and profile of gluten immunogenic peptides, described herein, is based on the oral-gastro-intestinal digestion (INFOGEST model) followed by extensive characterization of residual gluten peptides by proteomic and immunochemical analyses. These approaches include liquid chromatography–high-resolution mass spectrometry (LC-MS/MS) and R5/G12 competitive ELISA. Functional studies to assess the immune stimulatory capabilities of digested gluten peptides are based on gut mucosa T cells or peripheral blood cells obtained from CD volunteers after a short oral gluten challenge

    Subjective satiety and plasma PYY concentration after wholemeal pasta

    Get PDF
    Dietary fiber and whole grain foods may contribute to the regulation of appetite; however, evidence has produced inconclusive findings. The objective was to evaluate the effects of an experimental wholemeal pasta on appetite ratings, plasma concentrations of gastrointestinal hormones involved in appetite control, and postprandial glucose/insulin responses in healthy adults. Fourteen healthy adults (7M/7F), mean age 30±2 yrs (mean±SEM), participated in a randomized, controlled, crossover trial. Participants consumed on two different days, at one week interval, 117g of wholemeal pasta or 100g of refined wheat pasta (control pasta), similar in energy and macronutrient composition except for fiber amount, which was higher in wholemeal pasta (11 vs 3 g). Appetite ratings, glucose/insulin/lipid and gastrointestinal hormone responses were measured at fasting and for 4-h after the ingestion of the pasta tests, after which self-reported energy intake for 8-h was evaluated. After the wholemeal pasta, the desire to eat and the sensation of hunger were lower (-16%, p=0.04 and -23%, p=0.004, respectively) and satiety was higher (+13%; p=0.08) compared with the control pasta; no effect on self-reported energy intake at subsequent meal was observed. After wholemeal pasta, glucose, triglyceride increased and GLP-1 responses were not different compared to control pasta but insulin response at 30 min (p<0.05) and ghrelin at 60 min (p=0.03) were lower and PYY levels higher (AUC=+44%, p=0.001). The appetite rating changes correlated with PYY plasma levels (p<0.03). In conclusion, consumption of whole grain instead of refined wheat pasta contributed to appetite control but did not seem to influence acute energy balance. Appetite ratings were associated with modifications in PYY hormone concentrations

    Peanut digestome: Identification of digestion resistant IgE binding peptides

    Get PDF
    Stability to proteolytic degradation in the digestive tract is considered a general feature shared by most food allergens. Current digestibility models exclusively utilize purified allergen proteins, neglecting the relevant effects of matrix that occur for foodstuff systems. In the present study, we investigated digestion stability of the major peanut allergens directly in the natural matrix using an in vitro static model that simulates the gastrointestinal digestion including the oral, gastric, duodenal and intestinal (brush border membrane enzymes) phases. Immunogenicity was evaluated by Western Blot using N=8 pooled sera of peanut allergic pediatric subjects. Immunoreactive, large-sized and fragments of Ara h 2, Ara h 6 and Ara h 3 survived hydrolysis as assessed by SDS-PAGE. Smaller resistant peptides mainly arising from Ara h 3 and also Ara h 1 were detected and further identified by LC-high resolution-MS/MS. RP-HPLC purification followed by dot-blot analysis and MS/MS-based identification demonstrated that stable IgE-binding peptides derived from Ara h 3. These results provide a more realistic picture of the potentially allergenic determinants of peanuts that survived the human digestion, taking into account the role of the food matrix, which may significantly affect gastrointestinal breakdown of peanut allergens

    Characterization of soluble and insoluble fibers in artichoke by-products by ATR-FTIR spectroscopy coupled with chemometrics

    Get PDF
    The objective of this study was to characterize the insoluble and soluble dietary fiber present in Argentine and Italian artichoke (Cynara scolymus) by-products by comparing chemical analysis and ATR-FTIR spectroscopy. Non-edible bracts of Argentine (AR) and Italian (Benevento (BN) and Sicily (SC)) artichoke cultivars were employed. The soluble and insoluble dietary fibers were extracted by physical procedures and determined by chemical, attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, and chemometric analysis (principal components analysis, PCA). No differences in total dietary fiber content between AR and SC samples were observed, although they both showed higher values than BN. With respect to insoluble fiber, this fraction represents 82.5%, 63.5%, and 55.2% of the total dietary fiber for BN, SC and AR, respectively. Fibers from AR presented different compositions and structures, as determined by ATR-FTIR, compared to those of the Italian cultivars (BN and SC). Comparing the results of dietary fiber measured by ezymogravimetric assay with those obtained by ATR-FTIR and PCA, we conclude that it is possible to discriminate samples that contain different kinds of fiber using ATR-FTIR.Fil: Quintero Ruiz, Natalia Andrea. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; ArgentinaFil: Paolucci, M.. Consiglio Nazionale delle Ricerche; Italia. Università Degli Studi del Sannio; ItaliaFil: Siano, Francesco. Consiglio Nazionale delle Ricerche; ItaliaFil: Mamone, Gianfranco. Consiglio Nazionale delle Ricerche; ItaliaFil: Picariello, Gianluca. Consiglio Nazionale delle Ricerche; ItaliaFil: Puppo, Maria Cecilia. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; ArgentinaFil: Cascone, G.. Consiglio Nazionale delle Ricerche; ItaliaFil: Volpe, M. G.. Consiglio Nazionale delle Ricerche; Itali
    corecore