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Gluten proteins are the causative agents of celiac disease (CD), a lifelong

and worldwide spread food intolerance, characterized by an autoimmune

enteropathy. Gluten is a complex mixture of high homologous water-

insoluble proteins, characterized by a high content of glutamine and

proline amino acids that confers a marked resistance to degradation by

gastrointestinal proteases. As a consequence of that, large peptides are

released in the gut lumen with the potential to activate inflammatory T cells,

in CD predisposed individuals. To date, several strategies aimed to detoxify

gluten proteins or to develop immunomodulatory drugs to recover immune

tolerance to gluten are under investigation. This review overviews the state

of art of both analytical and functional methods currently used to assess the

immunogenicity potential of gluten proteins from different cereal sources,

including native raw seed flours and complex food products, as well as drug-

treated samples. The analytical design to assess the content and profile of

gluten immunogenic peptides, described herein, is based on the oral-gastro-

intestinal digestion (INFOGEST model) followed by extensive characterization

of residual gluten peptides by proteomic and immunochemical analyses.

These approaches include liquid chromatography–high-resolution mass

spectrometry (LC-MS/MS) and R5/G12 competitive ELISA. Functional studies

to assess the immune stimulatory capabilities of digested gluten peptides are

based on gut mucosa T cells or peripheral blood cells obtained from CD

volunteers after a short oral gluten challenge.
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1. Introduction

1.1. Epidemiology, diagnosis, and
therapy

Celiac disease (CD) is a common immune-mediated
enteropathy caused in genetically susceptible individuals by
the consumption of gluten proteins, contained in wheat,
barley, and rye cereals (1). The genetic predisposition is
given by specific alleles of the HLA class II DQ genes
that encode for the DQ2.5 (DQA1∗05 and DQB1∗02) or
DQ8 (DQA1∗03 and DQB1∗0302) molecules (2). CD can
arise at any age, with a global prevalence ranging from
0.5 to 2%, with an average of 1% in wheat consuming
countries (1).

Clinically, CD may manifest with gastrointestinal
symptoms, such as abdominal pains, diarrhea, anemia,
and malabsorption syndromes (typical CD forms), or may
present with extra-intestinal symptoms, such as skin lesions,
ataxia, infertility, and frequent aphthous ulcerations (atypical
CD forms). However, it may manifest symptomless, despite
an evident intestinal mucosa inflammation (silent CD forms)
(3). Diagnostic criteria include serological tests, such as the
detection of anti-tissue transglutaminase antibodies (tTG-IgA)
and anti-endomysium (EMA-IgA). Anti-deamidated gliadin
peptides (DGP-IgG) are also included but have a specificity
lower than tTG-IgA (average value: 97.9 and 87.81% for tTG and
DPG, respectively) (4). Notwithstanding the high sensitivity and
specificity of these serological tests, histological evaluation of
duodenal mucosa after an esophagogastroduodenoscopy
(EGD) is still considered the gold standard to make a
diagnosis of CD, in particular in adults (5). Instead, in
childhood, less invasive criteria are recommended according
to recent guidelines of the European Society for Pediatric
Gastroenterology Hepatology and Nutrition (ESPGHAN).
A diagnosis of CD can be performed in the presence of high
titers of tTG-IgA (at least 10-fold the cutoff), and the presence
of clear CD-associated symptoms, thus no more requiring
the EGD (6).

Furthermore, approximately 10% of children with
positive tTG-IgA show duodenal mucosa with normal
villous architecture and low inflammation. These patients are
considered to have a “potential” CD. Notably, most of the
subjects included in this group are at high risk for developing a
typical CD later in life (7, 8).

To date, no drug is available for celiac disease patients, and
the only safe and efficient treatment is the gluten-free diet (GFD)
which is to be strictly followed for life. Gluten removal from
the diet results in symptom recovery and small intestinal lesion
resolution in the great majority of dietary compliant patients
(9, 10).

1.2. Genomic and chemistry of gluten
proteins

Wheat is one of the world’s major cultivated and consumed
food crops along with rice and maize.1 It is an essential
staple food because of its important nutritional characteristics,
technological properties, and long shelf life (11). Bread wheat
(Triticum aestivum) and durum wheat (Triticum durum) are
the most important varieties currently grown worldwide. Bread
wheat accounts for 95% of global wheat production and is used
for the manufacturing of bakery foods (i.e., bread, cakes, and
cookies). Durum wheat is primarily used for the production of
pasta. The modern cultivated wheat has passed a long evolution
that took place for more than 10,000 years starting with
polyploidization events between Triticum urartu (AA genome)
and an Aegilops speltoides-related species (BB genome) and
resulting in Triticum turgidum ssp. dicoccoides, and between
T. turgidum ssp. durum (AABB genome) and Aegilops tauschii
(DD genome), forming the modern hexaploid bread wheat
(AABBDD genome) (12). Historically, the large diffusion of
hexaploid and tetraploid wheat cultivars was due to their
adaptability and high yield potential, as well as to the capacity
of gluten proteins to confer viscoelastic properties that allow the
dough to be processed into food products (13, 14).

Gluten proteins account for about 85–90% of wheat
protein fraction, while the remainder is constituted by the
water-soluble albumin and globulin proteins. According to
Osborne’s classification, gluten proteins are divided into alcohol-
soluble monomeric gliadin and alcohol-insoluble polymeric
glutenin. The gliadins are further classified into α-, γ-, and
ω-gliadin fractions with molecular mass ranging from 28 to
55 kDa. Gliadins are important in determining the extensibility
characteristics of dough. During the mixing of flour with water,
gliadins take part in the development of the gluten network
through the formation of intermolecular hydrogen bonds and
hydrophobic bonds between non-polar amino acid side chains,
which also interact with the flour lipids (15–17).

Glutenins consist of disulfide-linked proteins with
molecular mass ranging from approximately 60,000 to
more than 10 million. Following the reduction of inter-
chain and intra-chain disulfide bonds, glutenins are divided
into high molecular weight (70–90 kDa) glutenin subunits
(HMW-GS) and low molecular weight (20–45 kDa) glutenin
subunits (LMW-GS), which represent the 40 and 60% of
glutenin composition, respectively (14). Structurally, HMW-GS
consists of three domains characterized by a non-repetitive
N-terminal domain and a C-terminal domain, which contain
cysteine residues, that produce inter-chain and intra-chain
disulfide bonds, and a repetitive central domain that promotes

1 http://faostat.fao.org/
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intermolecular hydrogen bonding (18). The number of cysteine
residues of HMW-GS affects the rheological properties of the
dough, since disulfide bonds determine gluten extensibility
and elasticity through the formation of larger glutenin
aggregates (19).

1.3. Proteolytic resistance of gluten
proteins and role in CD
immunopathogenesis

Gluten proteins are poorly affected by proteases occurring
in the gastric and intestinal tract (GI), including the enzymes
of the small intestinal brush-border membrane. The marked
resistance to proteolysis is due to the high percentage
of proline and glutamine residues and to the lack of
specific GI proteases with cleavage-site activity for intra-
chain post-proline residues (20). As a consequence, large
gluten oligopeptides reach the gut lumen, triggering adverse
immune responses in patients with CD (21). To date, several
gluten peptides resistant to digestive enzymes and harboring
immune toxic sequences have been identified (22, 23). Two
peptides derived from α- and γ-gliadin are particularly

relevant for the activation of intestinal T cells: the 33-
mer (LQLQPFPQPQLPYPQPQLPYPQPQLPYPQPQPF) from
α-2-gliadins and the 26-mer (FLQPQQPFPQQPQQPYPQ
QPQQPFPQ) from γ-gliadins. These peptides contain shorter
sequences that, after TG2-mediated deamination, bind HLA-
DQ2 and HLA-DQ8 molecules and stimulate T cells in patients
with CD (11, 23–25).

Among protease-resistant sequences, peptide 31–55 from
α-gliadins (LGQQQPFPPQQPYPQPQPFPSQQPY) has been
found to contribute to the onset and the development of CD (26,
27). Its shorter peptide, 31–43 (LGQQQPFPPQQPY) elicits an
innate immune response in professional antigen presenting cells
(monocytes, macrophages, and dendritic cells) and expression
of stress signals on intestinal epithelial cells (28–30).

Several studies have demonstrated that intestinal CD4 + T
cells have a key role in inflammatory responses in CD (25, 31–
33), and that all gluten protein families contain peptides able to
stimulate T-cell response (23). The activation of these T cells,
resident mainly in the lamina propria compartment, triggers
an inflammatory cascade mediated by interferon-γ (INF-γ) and
interleukin-21 (IL-21). These gluten-specific CD4 + T cells can
be isolated from CD intestinal mucosa and in vitro expanded,
thus representing an important source for bioassays useful to

FIGURE 1

Workflow of analytical and functional approaches to assess the amount and immunogenicity of gluten proteins in raw seed flour and complex
food matrices.
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assess pathogenesis and to validate novel therapies for CD
management, as reported below in more detail.

2. Analytical assessment of gluten
peptides immunotoxicity

2.1. In vitro enzymatic digestion of
gluten proteins

Understanding the outcome of the gluten proteins in the
human digestive system (bioavailability) is an area of interest
being these dietary proteins are the causative factor of CD.

Food digestion may be assessed by both in vivo (human or
animal) and in vitro methods, although the latter procedures are
preferred in research related to food and nutrition because of
their speed, cost, and reproducibility compared to in vivo studies
(34). Models of in vitro digestion have been proposed since
the 1990s to study the metabolism of food components along
with the gastrointestinal tract. Regarding the CD studies, early
in vitro digestion experiments were limited to pepsin and trypsin
proteolysis for mimicking the gastric and pancreatic stages,
respectively (25). Shan et al. (35) used a more accurate in vitro
digestion consisting of a pool of duodenal enzymes (trypsin,
chymotrypsin, elastase, and carboxypeptidase) along with
brush-border membrane enzymes to mimic the duodenal and
intestinal digestion, respectively. With this strategy, the authors
identify the well-known 33-mer from α-gliadin and 26-mer
from γ-gliadin. A separate study employed the in vitro methods
to demonstrate the digestive protease resistance of a 25-mer
from γ-gliadin (26). Similarly, Gianfrani et al. assessed the

immunogenicity of diploid wheat Triticum monococcum after
in vitro digestion (22). The authors found that monococcum
gluten proteins are more susceptible to the digestion of GI
proteases compared to those from hexaploidy wheat leading to
an overall lower immunotoxicity on T cells (22).

The in vitro digestive models have been improved
extensively over the years. Noteworthy, an in vitro model
has been successfully designed to reproduce the physiological
process as close as possible to the in vivo one (36, 37). The
INFOGEST digestion procedure consists of three consecutive
phases: oral, gastric, and intestinal (small intestine), which
include all enzymes, bile salts, digestive fluids (saliva, gastric,
and intestinal juices), and incubation times of physiological
condition. Following a pilot publication in 2016, the INFOGEST
model is the most used in vitro digestion method throughout the
research community aimed to simulate the behavior of foods
within the human gastrointestinal tract (38). The INFOGEST
method was also applied to the study of the immunogenic
potential of peptides from wheat products, tree nuts, and
peanuts, which are all resistant to gastrointestinal digestion
(39–42).

2.2. Detection of gluten peptides after
the in vitro gastroduodenal digestion

Because of the physicochemical properties of gluten
proteins, there are, to date, few approaches validated to
detect gluten toxic peptides present in different food matrices.
In general, the main analytical methods employed to study
the gluten protein are electrophoresis (43–46), reversed-phase

TABLE 1 Strengths and limitations of common analytical methods for the detection of gluten proteins/peptides.

Methods Strengths Limitations References

ELISA • Commercially available.
• User friendly.
• Rapid analysis.
• Quantitative analysis of intact gluten.

• Cross-reactivity of antibodies.
• Lack of unique kit procedures (different buffers,

concentration of antibodies, extraction
protocols, etc.).

• Lack of certified reference materials.
• Over- or under-estimation of the gluten

content.

(55–61)

Western-blot • Identification of more reactive proteins or
peptides.

• Support the ELISA test.

• Less sensitive compared to ELISA assay.
• Problems relating to protein quantification.

(62, 63)

RP-HPLC • Protein polymorphism of gluten.
• Evaluation of gliadin/glutenin ratio.

• Need to couple to mass spectrometry for
protein/peptide identification.

(47–50)

Electrophoresis • Detect small variations in protein size.
• Qualitative characterization of

proteins/peptides.

• Difficult to separate gluten proteins having
similar molecular weights.

• Measure of molecular weights are not accurate.
• Need to proteomic based analysis for protein

sequencing.

(43–46)

Mass spectrometry • Highly sensitive.
• Accurate detection of proteins/peptides.
• Quantitative analysis.

• Require experienced staff.
• Expensive equipment.
• Need certified reference materials for accurate

quantitation.
• Incomplete available databases.

(51–54)
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(RP)-HPLC, size-exclusion HPLC (SE-HPLC) (47–50), mass
spectrometry (MS) (51–54), enzyme-linked immunosorbent
assay (ELISA) (55–61), and Western blot analysis (62, 63).
The most used assays to detect gluten in food are based
on immunological tests (such as ELISA kits) or proteomic
approaches involving MS. However, none of them is considered
universally adequate for the complete detection of gluten in food
matrices. All technologies present advantages and disadvantages
depending on specific tasks (Figure 1 and Table 1).

2.2.1. Immunological method: ELISA assay
Immunological methods for gluten protein detection are

the most widespread methodologies available so far. ELISAs
are the most frequently used by food manufacturers or control
authorities to assess the gluten content in food products. Several
ELISA kits are available in the market; however, for some
of them, the composition of extraction buffers, the nature of
the antibodies, and the calibration material are not declared.
Furthermore, some kits are specific for detecting wheat gluten,
while others detect also rye and barley prolamins.

The majority of commercially available kits are based on
the R5 monoclonal antibody, which is only validated by Codex
Alimentarius legislation, while other tests are based on different
antibodies, such as the G12 and α-20 monoclonal antibodies.
Most of them detect only gliadin proteins, excluding the
glutenin fraction. Usually, the gluten content is calculated by
multiplying the prolamin content, which represents 50% of total
wheat protein by a factor of 2. However, several issues have been
reported for ELISA measurements (Table 1) that can result in
an overestimation or underestimation of gluten amount since
the ratio of prolamin/glutenin depends on the wheat variety and
the type of food processing (55–61). Due to this overestimation
or underestimation of the gluten content by ELISA, alternative
analytical methods are urgently needed (64).

An important issue is the quantitative accuracy of
processed foods. Bruins Slot et al. evaluated the accuracy and
reproducibility of 14 ELISA kits for gluten detection in several
food matrices with different degrees of complexity (55). The
authors showed that there is no single ELISA method that
can accurately detect and quantify gluten in all the different
matrices. In a recent study, the gluten content resulted was
overestimated, up to six times, in breakfast food products
containing rye, or underestimated, up to seven times, in barley-
containing food, thus representing a serious health risk for
people with CD (59). Technological treatment may affect the
limit of detection of gluten by ELISA. For instance, the exposure
of wheat to microwave technology was claimed as an efficient
method to remove the antigenic properties of gluten. This
evidence was based on R5 ELISA, which detected the reduction
of immunogenicity to over 99% (65) after microwave treatment.
However, a separate study showed that the undetectably of
gluten by the R5 antibody was actually due to a failure to
extract the gluten proteins from the microwave-treated flour.

In fact, gluten was found to be insoluble in the extraction
buffers because of the microwave heat treatment. Conversely,
after enzymatic hydrolysis, gluten peptides were easily extracted
and analyzed by G12 ELISA and mass spectrometry analysis,
confirming that microwave treatment does not abolish the
immunogenicity of gluten proteins (66).

2.2.2. Proteomic methods: MS-based
technologies

Mass spectrometry (MS)-based proteomic offers an
alternative method to detect the gluten content and/or to
confirm ELISA measurements. This method represents a
complementary way that can provide specific information,
such as peptide identification and relative peptide abundance.
Furthermore, the analysis of intact proteins by MS has
been used to develop low-resolution fingerprints for grain
source identification for the implementation of gluten-
free labeling regulations (67). Several approaches for the
quantitation of immunogenic gluten peptides by targeted liquid
chromatography–tandem mass spectrometry (LC-MS/MS)
were published in recent years (68). A bottom-up proteomic
approach, which is based on the enzymatic digestion of proteins
and identification of the resulting peptides by LC-MS/MS, has
been applied to gluten analysis and allowed to select specific
peptides to be used as markers for the detection of gluten
in complex food matrices. Sealey-Voyksner et al. used the
LC-MS/MS method to select six CD-immunogenic wheat
gluten peptides in native and processed food samples (51).
Similarly, Fiedler et al. identified two wheat marker peptides
from α-gliadins, to be used to detect wheat contamination in
oats (67). Nine CD-immunogenic peptides from α-gliadins
were quantitated by van den Broeck et al. using LC-MS/MS
(52). Schalk et al. (64) were the first to establish a link between
concentrations of 16 wheat marker peptides and gluten contents
using a targeted-quantitative LC-MS/MS method. Gluten
contents expressed as the sum of all determined protein types
were comparable to those analyzed by RP-HPLC and R5 ELISA
in wheat starches with high gluten contents.

More recently, Li et al. identified and quantified
gluten peptides from wheat, rye, barley, and oats in
different food products (53). Several peptide fragments,
including immunotoxic peptides, were found in breakfast
cereals, breakfast bars, and powdered drinks, such as the
peptide RPLFQLVQGQGIIQPQQPAQLEVIR from γ-
gliadin. This sequence comprises a known T-cell epitope,
VQGQGIIQPQQPAQL. Another stimulatory peptide, QQPG
QGQQPEQGQQPGQGQQGYYPTSPQQPGQGK, derived
from the high molecular weight glutenin subunit, was
found in both breakfast cereals and bars. Again, the
SDQPQQSFPQQPQQK peptide that contained the
immunotoxic sequence belonging to γ1-secalin was identified
in gliadin/avenin-like seed protein in the breakfast cereals.
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A comparison to ELISA showed similar results for the wheat-
containing products, but discrepancies were noted for the
barley-containing products. The authors highlighted the
high relevance of mass spectrometry as a reliable tool for
the detection of gluten proteins in food and, particularly, for
extensive heat-treated foods (53). In conclusion, these studies
have proven that proteomics is a useful strategy both for the
detection of CD-toxic peptides and the quantification of gluten
content in processed food products (53).

2.2.3. The INFOGEST protocol for digestion of
gluten proteins in complex food matrices

To date, most of the studies on gluten proteins were
conducted without taking into account the role of extensive
gastrointestinal digestion, consequently obtaining results with
little physiological relevance (21, 22, 26, 35, 69). The
gastrointestinal digestion employing the INFOGEST model
has recently been applied to study the bioavailability of
immunotoxic gluten peptides in complex food matrices (70–
73). Mamone et al. (74), investigated the metabolic fate of
pasta proteins upon in vitro simulated gastrointestinal digestion
including an additional step with porcine intestinal BBM
hydrolases that mimics peptide degradation at the level of the
jejunum. The authors demonstrated that bread and pasta gluten
proteins were completely hydrolyzed during in vitro digestion.
Ogilvie et al. (70) used proteomics and an immunochemical
approach to assess the immunogenicity of gluten residues in
wheat-based food during simulated in vitro digestion. The
authors demonstrated that gluten toxic peptides were rapidly
released from the food matrix during the intestinal phase.

Recently, Boukid et al. successfully combined the
INFOGEST method and target proteomic analysis to detect
and quantify gluten peptides relevant to CD pathogenesis
(54). The authors demonstrated that 227 peptides were
released after gastrointestinal digestion, and nine peptides
harbored CD-immunogenic sequences. Interestingly, Olgivie
et al. explored the kinetic of immunogenic peptides released
from the sourdough bread upon INFOGEST digestion,
using a quantitative proteomics analysis and ELISA. The
authors demonstrated that although sourdough fermentation
affected the degree of gluten hydrolysis, no difference in the
immunogenicity profile was shown in the digested product,
compared with yeast-fermented bread (73).

3. Glutenases: Gluten-degrading
enzymes as a new therapeutic
frontier in CD

Over the last few years, several strategies have been proposed
to detoxify or decrease the immunogenicity of wheat-based
food (75). An interesting approach is based on the addition of
proteases that are able to hydrolyze immunotoxic sequences. For

instance, the use of prolyl endopeptidase (PEP) from Aspergillus
niger during the brewing process represents a useful method to
produce gluten-free barley-based beers (76).

Food-grade protease-based strategy seems efficient in
detoxifying moderate quantities of dietary gluten proteins.
These glutenases have to degrade gluten immunogenic peptides
prevalently in the stomach, thus avoiding any stimulation of the
duodenal immune system. Endopeptidases, produced by various
plants, bacteria, or fungi, are currently under investigation
for their capability to degrade the proline/glutamine-rich
gluten peptides in the gastric and upper intestinal tracts
(77–82). Shan et al. have shown the capability of bacteria
prolyl endopeptidases from Flavobacterium meningosepticum
(FM-PEP), Sphingomonas capsulate (SC-PEP or ALV002),
and Myxococcus xanthus (MX-PEP) in degrading successfully
immunogenic gluten amino acid sequences (78). In detail,
the gluten-degrading properties of FM-PEP, SC-PEP, and
MX-PEP (stable and active at pH 6–7) were evaluated
using two substrates, the 33-mer and smaller sequence,
PQPQLPYPQPQLP. The results of this study showed that all
PEPs preferentially cleave P-Q bonds that are usually found
in immunogenic gluten peptides and that are resistant to
gastrointestinal proteases. Edens et al. identified glutenase from

TABLE 2 In vitro T-cell-based assay to evaluate immunogenicity of
gluten proteins and novel strategies to treat celiac disease (CD).

Purpose of
the research

Outcomes by
in vitro
functional T-cell
assays

References

Elucidation of
immunopathogenic
mechanisms
of celiac disease

Generation and
expansion of
gliadin-specific T-cells
and clones from celiac
small intestinal mucosa.

(88–90)

Characterization of
tissue-resident memory
T-cells in celiac disease.

(85, 86)

Identification of
immunogenic gluten
peptides.

(23, 25, 35, 84)

Efficacy evaluation
of novel enzymatic
strategies to treat
celiac disease in
pre-clinical studies

Gluten peptide
transamidation
(mTG-transamidation)
of wheat flour inhibits
the response to gliadin.

(87, 96)

Gluten proteolysis at
gastric condition by the
endoproteases
«glutenases”:
(1) EP-B2/PEP
(ALV003/Latiglutenase
in clinical trial)
(2) Kuma062
(3) E40.

(77, 81, 82, 91, 92)

Searching of less
immunogenic wheat
species for CD
prevention

Assessment of the lower
immunostimulatory
activity of Triticum
monococcum.

(22, 97, 98)
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the fungus A. niger (AN-PEP or ASP) that efficiently hydrolyzed
gluten and abolish T-cell stimulatory properties (79). Unlike
SC-PEP, FM-PEP, and MX-PEP, which have an optimum pH
activity between 7.0 and 8.0, AN-PEP is active at lower pH
values between pH 4.0 and 5.0 explaining its functionality in the
stomach and allowing early-digestion of gluten proteins.

Again, a mixture of aspergillopepsin from A. niger and DPP-
IV from Aspergillus oryzae was used to hydrolyze small amounts
of gluten in vitro (80). Other studies showed the proteolytic
abilities of a glutamine-specific cysteine endoprotease derived
from seeds of germinating barley (EP-B2). Different from
PEP, EP-B2 has cleavage-site specificity for post-glutamine
residues. Gass et al. proposed a new strategy based on the
combination of EP-B2 and PEP enzymes, both with gastric
activity and complementary substrate specificity (81). Both
in vitro and in vivo functional experiments demonstrated that
these enzymes synergically hydrolyzed gluten proteins, reducing
their immunogenicity (81).

Recently, a novel microbial endopeptidase expressed in
recombinant actinomycete S. lividans TK24, named the
endoprotease-40 (E40), has been demonstrated to be a successful
enzyme in detoxifying gluten proteins during the transit in the
stomach, suggesting its use for oral enzymatic therapy (OET) in
CD. The authors, using both proteomic and immunochemical
approaches (SDS-PAGE, RP-HPLC, LC-MS/MS, and ELISA),
showed that E40 efficiently hydrolyzed the most immunogenic
33-mer, as well as the whole gliadin proteins. Furthermore, the
analysis of T lymphocytes from duodenal biopsies of patients
with CD indicated a markedly reduced production of IFN-γ
when exposed to gluten digested with E40, as described below
(77, 82).

4. Functional approaches to assess
the immunostimulatory properties
of gluten peptides: Celiac
T-cell-based bioassays

As mentioned previously, the peculiar amino acid
composition of wheat gluten proteins, and homologous
proteins of rye and barley, strongly hampers the degradation
by gastrointestinal proteases, with a release of large peptides
with immunogenic potential for T cells in the gut lumen of
subjects with CD (24, 35, 83, 84). These partially digested
gluten peptides are deamidated by the tTG enzyme highly
expressed in the intestinal mucosa of patients with CD. This
reaction increases the binding affinity of gluten peptides to
the CD-associated HLA-DQ2/DQ8 molecules. The peptide-
HLA complex is recognized by CD4 + T cells triggering an
inflammatory reaction that leads to a profound remodeling
of the intestinal mucosa tissue (24, 35, 83, 84). Of note, the
gluten-reactive CD4 + T cells are exclusively found in the gut

mucosa of patients with CD and persist in the celiac intestinal
mucosa for decades as memory cells (85, 86).

For their high disease specificity, these memory T cells
reactive to gluten peptides have been largely used in several
studies aimed to elucidate the CD immunopathogenic
mechanisms and to validate gluten detoxifying and
immunomodulatory strategies. Through painstaking work,
gluten-specific T cells can be isolated from gut mucosa biopsies
of patients with CD and in vitro expanded as polyclonal
CD3 + cell lines or cell clones, as reported in detail elsewhere
(87–90). In brief, intestinal cells are isolated from jejunal
explants by enzymatic digestion with collagenase and in vitro
stimulated with autologous feeder cells and an enzymatic
digest of gluten/gliadin proteins. The T-cell cultures are further
expanded by repeated stimulations with allogenic feeders, the
mitogen phytohemagglutinin, and growth factors IL-2 and IL-
15. Usually, the T-cell line antigen specificity is assessed by the
detection of IFN-γ, the dominant cytokine in CD pathogenesis,
by enzyme-linked immunosorbent assay (ELISA or ELISPOT)
and T-cell proliferation assays, as reported in the many studies
mentioned earlier. Examples of studies using intestinal T-cell
assays in CD are presented in Table 2.

4.1. Identification of gluten
immunogenic peptides

For many years, studies aiming to identify the complete
repertoire of gluten epitopes were supported by the use of
intestinal T-cell lines and T-cell clones generated from the
jejunal mucosa of patients with CD (25, 35). These studies
demonstrated a great heterogeneity of immunogenic gluten
peptides. T-cell epitopes were identified in all wheat gluten
proteins (α-, γ-, ω-gliadins, high molecular weight-HMW, and
low molecular weight-LMW glutenins) and in homologous
proteins from hordeins and secalins (35). An update of the
known HLA-DQ-restricted gluten T-cell epitopes, responsible
for the induction and/or maintenance of intestinal mucosa
inflammation in patients with CD, has been reported (23). The
definition of the complete repertoire of gluten immunogenic
peptides is a pivotal step for the development of alternative
strategies to the gluten-free diet (GFD) for the treatment
of CD, as it provides a useful tool to assess whether these
novel strategies under investigation succeed in reducing the
stimulatory capability of gluten epitopes known as the most
dominant in patients with CD.

4.2. Analysis of glutenase capability to
detoxify gluten peptides

Before moving on to in vivo clinical studies and subsequent
clinical trials, the efficacy of potential detoxification strategies of
gluten proteins from different foodstuff sources has been often
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assessed using different gluten-reactive T cell lines (G-TCLs)
characterized by a large repertoire of reactivity toward gluten
peptides (25). Among the several alternative strategies under
investigation for CD treatment, great attention is currently
paid to enzymatic approaches intended to fastly digest gluten
proteins that work at the same low pH occurring in the stomach.
As extensively described earlier, many glutenases, produced by
bacteria, fungi, and plants, as barley, or engineered recombinant
proteins, have been investigated as possible drug therapy for CD
alternative to GFD, or as oral supplements to support GFD and
protect celiac diseases from unintentional gluten exposures (77,
81, 91, 92). Glutenases, thanks to their capability in cleaving
the proline-rich and glutamine-rich gluten sequences, represent
a promising drug for oral therapy in CD (93). Pioneering
studies from Khosla et al. assayed a combination of two proline-
specific endopeptidase (EP-B2/PEP) that operates under gastric
conditions is able to detoxify gluten within 10 min of simulated
duodenal conditions, as proved by chromatographic analysis
and in vitro celiac T cells. In particular, they observed that
polyclonal G-TCLs, reactive to a panel of known gluten epitopes,
did not proliferate in response to all tested concentrations
of digested and enzyme-treated gluten (81, 91). Following
these encouraging in vitro findings, clinical studies have been
performed to assess the efficacy of EP-B2 combined with an
endopeptidase from Sphingomonas capsulata (SC-PEP) known
as ALV003/Latiglutenase (94, 95).

Wolf et al. reported in vitro celiac T-cell studies to assess the
glutenasic activity of a computationally designed kumamolisin
endopeptidase known as Kuma030 or TAK062 (92). This
recombinant protein recognizes tripeptide sequences in the
immunogenic regions of gliadin or homologous proteins in
barley and rye. A decreased immunostimulatory potential of
gliadin proteins treated with Kuma030 was measured in G-TCLs
generated from five patients with CD, as shown by IFN-γ and
cell proliferation readouts (92).

Intestinal T-cell lines were also used in a functional assay
to verify the reduced immunostimulatory capacity of gluten
proteins digested with the E40, a promising protease of
microbial origin (77) (Figure 2). A recent study from the same
research group showed that E40 was efficient in hydrolyzing
gluten epitopes in complex food matrices, such as pasta, bread,
and wheat beer samples (82).

4.3. Validation of gluten detoxifying
strategies aimed to obtain gluten-free
wheat flour

An enzymatic strategy to reduce gluten load consists of
wheat flour pre-treatment with microbial transglutaminase
(mTG) and acyl-acceptor molecules (L-lysine, glycine ethyl ester,
and hydroxylamine). This approach consists of inducing the
transamidation of specific glutamine residues, thus blocking

their deamidation by tTG (87, 96). As the deamidation is
a crucial step for the immunotoxicity of gluten proteins, it
has been demonstrated that this biochemical strategy strongly
reduces the capability of transamidated gluten to stimulate
G-TCLs obtained from 12 patients with CD and highly
reactive to untreated gliadin (87). The transamidation reaction
specifically masks the gluten epitopes rendering them not able
to activate pro-inflammatory T cells. Of note, this approach does
not alter the integrity of the gluten protein structure, as well as
its viscoelasticity and technological properties.

4.4. Searching for safer wheat species
for CD prevention

Although the minimal level of gluten consumption that is
safe for patients with celiac disease has not yet been established,
a number of studies demonstrated that the magnitude of
inflammatory T-cell response to gluten strictly depends on the
gluten peptide concentration that is loaded on HLA-DQ2/8
restriction molecules. As a consequence, great attention was
paid to the research of cereal species with a low content
of immunotoxic sequences, with the aim of limiting dietary
exposure to gluten in the general population with genetic
CD risk (11). As extensively described earlier, another crucial
factor determining the immunostimulatory potentiality of
gluten proteins is the digestibility by gastrointestinal proteases,
strictly dependent on primary protein structure. Recent studies
reported that diploid wheat species, such as T. monococcum
(T. monococcum), contain gluten proteins more susceptible to
the digestion of gastro-pancreatic and brush-border membrane
(BBM) enzymes if compared to those from hexaploid common
wheat T. aestivum (97). For this peculiarity, the diploid
wheat species have been tested in vitro to ascertain their low
immunostimulatory activity on TCLs of patients with CD (22,
97). As convincingly demonstrated by functional T-cell assays,
the extensive in vitro gastrointestinal digestion of monococcum
gluten proteins drastically reduced the capability to elicit IFN-
γ production and cell proliferation compared to hexaploidy
wheat gluten (Figure 3) (97, 98). These in vitro studies were
further corroborated by in vivo short oral challenge as reported
below. All these data obtained from functional T-cell assays,
combined with proteomic analysis, make diploid wheat crop
species among the most suitable candidates for the prevention
of CD in people at high risk of developing the disease due to
genetic and familiar predisposition.

5. Short-term (3 days) oral gluten
challenge

The entirety of limitations connected to a lifelong
gluten-free diet (GFD), and the low percentage of patients

Frontiers in Nutrition 08 frontiersin.org

https://doi.org/10.3389/fnut.2022.1049623
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-09-1049623 January 18, 2023 Time: 12:52 # 9

Mamone et al. 10.3389/fnut.2022.1049623

FIGURE 2

The digestion with the endoproteases “glutenases” strongly reduced the immunostimulatory capacity of gliadin on celiac intestinal T cells. INF-γ

responses of intestinal T-cell line obtained from a celiac patient were evaluated after incubation of gliadin proteins both native or treated with
glutenase E40 (77, 82). Gliadin was purified from hexaploid wheat flour and incubated with E40 at pH 4, 37◦C for 120 min (enzyme:substrate
ratio 1:20). Gliadin enzymatic digest was next deamidated by tTG treatment. IFN-γ production was measured by ELISA in cell supernatants
collected after 48 hours of incubation. Native and E40-treated gliadin were assayed on T cells at 50 and 100 µg/ml.

FIGURE 3

Marked reduction of specific T-cell response to gliadin from diploid wheat (monococcum) after the extensive in vitro gastro-intestinal digestion
including brush-border membrane enzymes (BBM). IFN-γ responses of intestinal T-cell line obtained from a celiac patient were evaluated after
stimulation with PC- (pepsin-chymotrypsin) or BBM- (pepsin-chymotrypsin-elastase and brush-border membrane enzymes) gliadin digests
from Triticum aestivum and Triticum monococcum wheats (22). Gliadin samples were deamidated by tTG treatment and assayed at 50 µg/ml.
IFN-γ production was evaluated by ELISA in cell supernatants after 48 hours of incubation.

with CD compliant with dietary therapy, mainly during
adolescence, prompted the scientific community to search for
an alternative treatment for CD (99, 100). Simultaneously with
the development of therapeutic strategies, it became necessary
to have functional tools to rapidly test their efficacy before
moving forward to clinical studies. For decades, the evaluation
of gut mucosa damage, in terms of villous eight and crypt depth
(Vh/Cd ratio) and intraepithelial lymphocytes (IEL) infiltration,
after a long (from 14 to 90 days) gluten consumption has
been the gold-standard approach to assessing the validity of
novel therapies (101–105). However, this procedure required
an endoscopy and is invasive for most patients with CD;
furthermore, the long-term gluten exposure, needed to induce
intestinal damage, makes this approach too demanding to
evaluate the effects of novel therapies.

In addition, the frequent risk of histological evaluation
pitfalls and other possible causes, not gluten-dependent
inducing mucosa villi atrophy, cannot be excluded. In the early
2,000 s, it developed a minimally invasive strategy to detect
gluten-specific T cells in the peripheral blood of GFD-compliant
patients with CD who underwent 3 days of clinically controlled
gluten consumption, around 6–16 gr gluten/die supplied as
bread slides, sandwiches, or cookies (106–109). Basically, gluten
primed CD4 + T lymphocytes, usually undetectable (or low
detectable) in the peripheral blood of treated patients with CD,
are transiently mobilized in the blood and became detectable
after 6 days of gluten consumption revealed by sensitive
assays, mainly enzyme-linked immunospot (ELISPOT) assay
detecting IFN-γ-producing T cells (106–109), and by tetramers
technology at flow cytometry or by tetramer assays (110). Over
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the past few years, the brief oral gluten challenge gave relevant
support in the characterization of gluten epitopes active both in
adult and pediatric patients with CD (33, 83), as well as allowed
the elucidation of cell phenotype and pattern of cytokines
produced by gluten-reactive T cells (90, 107, 108, 111, 112).

5.1. Short-term gluten challenge, as a
pre-clinical evaluation assay of novel
gluten detoxification and therapeutic
strategies

A number of studies showed that the short-term gluten
challenge is a sensitive tool for the pre-clinical assessment
of new strategies to detoxify gluten proteins or therapeutic
drugs. Tye Din et al. used this non-invasive short-term
procedure to validate the efficacy of the combined cysteine
endoprotease and prolyl endopeptidase (ALV003/Latiglutenase)
(113). An in vivo study was conducted on 20 patients with
CD on GFD, randomized to consume foods made with gluten
(16 g/day) pre-treated with ALV003, or gluten pre-treated with
a placebo. The T-cell reactivity against immunodominant α-
gliadin epitope 33-mer or whole gliadin, as revealed by IFN-
γ ELISPOT, was markedly decreased in volunteers receiving
gluten pre-treated with ALV003/Latiglutenase compared to
those receiving placebo-treated gluten, thus suggesting the
huge potentiality of glutenase degradation to reduce the gluten
immunotoxicity (113).

FIGURE 4

Short gluten oral challenge with the diploid Triticum
monococcum wheat results in a lower immune response
compared to soft Triticum aestivum wheat. Gliadin-specific
T-cell responses were elicited by the short oral challenge with
the diploid wheat Triticum monococcum (TM, left panel) and
with the hexaploid wheat Triticum aestivum (TA, right panel).
Celiac subjects (n = 11) consumed for 3 days sandwiches made
with TM (cv Norberto-ID331) or with TA (cv Sagittario)
corresponding to 12 g of gluten (119). PBMCs obtained soon
before (day 0) and (day 6) after the gluten consumption were in
vitro stimulated with deamidated, pepsin-chymotrypsin digests
of gliadin from either TM wheat (left) or TA wheat (right).
Digested samples were deamidated by tTG treatment and
assayed at 50 µg/ml. IFN-γ secreting cells were revealed by
EliSpot assay. Data are reported as IFN-γ spot-forming cells
(SFC) detected in 106 PBMCs.

The relevance of the brief gluten challenge to monitor the
efficacy of gluten detoxification strategies was further addressed
by an Italian study aimed to assess whether the pre-digestion
of wheat flour with selected lactobacilli and fungal proteases
(hydrolyzed wheat gluten) might decrease, or even abolish,
the T-cell immunogenicity in patients with CD (114, 115).
Twenty subjects with celiac disease including pediatric subjects,
following a GFD regimen for at least 3 years, were randomized
to consume bread slices produced with hydrolyzed wheat flour
(corresponding to 10 g of gluten/day). The hydrolyzed wheat
gluten did not mobilize gluten-reactive T lymphocytes from
the intestinal mucosa to the peripheral blood compared with
that elicited after a short-term oral challenge with untreated
wheat flour, with statistically significant differences in the
number of circulating gluten-reactive T cells between the two
experimental groups. Notably, the brief challenge of the study
was a further confirmation of a previous long-term (60 days)
challenge addressed to demonstrate whether the enzymatic pre-
digestion with lactobacilli and fungal proteases abolish gluten

TABLE 3 Short oral gluten challenge to evaluate immunogenicity of
gluten proteins and novel strategies to treat celiac disease (CD).

Purpose of
the research

Outcomes by
short gluten oral
challenge

References

Elucidation of
immunopathogenic
mechanisms of celiac
disease

Detection of
gluten-specific T cells in
peripheral blood by
ELISPOT and tetramers
technology.

(106–108, 110–112)

Identification of
immunogenic gluten
peptides.

(33, 107)

Efficacy evaluation
of novel enzymatic
strategies to treat
celiac disease
in pre-clinical
studies

Foods made with gluten
pre-treated with
glutenase
ALV003/Latiglutenase
were less immunotoxic
for CD patients.

(112, 113)

Enzymatic pre-digestion
with lactobacilli and
fungal proteases
(hydrolyzed wheat
gluten) abolishes gluten
proteins toxicity in CD
patients.

(114, 115)

Searching of less
immunogenic wheat
species for CD
prevention

Reduced
immunogenicity in CD
patients of diploid
Triticum monococcum
compared to hexaploid
Triticum aestivum soft
wheat.

(119)
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protein toxicity (114). No alteration was reported as histological
mucosal change or in antibody seroconversion, thus indicating
no relapse after pre-hydrolyzed wheat flour long consumption.

Another successful application of a brief gluten oral
challenge was provided by a study aimed to assess the
immune stimulatory properties of gluten derived from a diploid
wheat species, that is, T. monococcum. After the promising
in vitro T-cell findings (98, 116–118) and proteomic and
mass spectrometry analysis demonstrating the pronounced
digestibility of diploid gluten proteins (22) compared to the
more evolved wheat genome, subsequently a brief oral gluten
challenge study was performed (119). Volunteers with CD
were enrolled to consume bread sandwiches made with diploid
or hexaploid wheat flour (approximately 12 g of gluten per
day for each study branch). The results confirmed as gluten
from T. monococcum retains a reduced capability to recruit
in vivo gluten-specific T-cell response compared to T. aestivum
(soft) wheat. A significantly decreased number of IFN-γ
secreting cells reactive to diploid gliadins were elicited in the
peripheral blood of patients with CD eating sandwiches made
with T. monococcum flour. Furthermore, the consumption
of monococcum-based bread for a few days elicited a lower
number of T cells reacting to five immune-dominant epitopes
from α-, ω-, and γ-gliadins compared to those elicited by soft
wheat. Overall, these findings confirmed the reduced in vivo
immunogenicity in patients with CD of diploid T. monococcum
compared to hexaploidy soft wheat (Figure 4). Additional
studies in a larger celiac cohort, or in CD first-degree relatives,
are required to address the applicability of this grain, with low
immunogenic gluten, in the prevention of celiac disease in the
general population (119).

Based on that, the short gluten challenge proved to be a
reproducible assay to monitor the immune response to gluten,
with great potential for its application in clinical practice. The
design of clinical trials aimed to evaluate novel therapeutic
drugs, or alternative cereals, could benefit greatly from this non-
invasive short-term procedure. Examples of studies using short
oral gluten challenges in CD are presented in Table 3.

6. Conclusion

Although nutritionally poor for humans, gluten proteins
are largely used in the food industry, as they confer unique
viscoelasticity properties to the dough and the palatability
of gluten-based food products. Due to the widespread of
gluten proteins in foodstuffs, compliance with gluten exclusion
dietary therapy might be difficult for many patients with
CD. To overcome this, several strategies are currently under
investigation that are aimed at detoxifying gluten immunogenic
peptides or finding specific therapeutic drugs that aim to recover
immune tolerance to gluten.

This review overviewed the analytical and functional
methods currently used to detect gluten immunogenic peptides

in foodstuffs made with naturally gluten-free cereals, or gluten-
containing cereals treated with various detoxifying strategies.
The amount and amino acidic sequence of gluten immunotoxic
peptides have been characterized in several studies by proteomic
and immunochemical analysis, such as liquid chromatography–
high-resolution mass spectrometry (LC-MS/MS) and R5/G12
competitive ELISA after the INFOGEST digestive in vitro model
that mimics the human physiologic gastrointestinal digestion.
The capability of digested gluten peptides to stimulate an
inflammatory reaction has been dissected both in vitro, on
intestinal human T cells, and in vivo, on peripheral blood
of volunteers with CD after a brief oral gluten challenge.
The large and successful application of such analytical and
functional approaches in pre-clinical studies, aimed to validate
biochemical, enzymatic, and immunotherapeutic strategies
currently under investigation to treat celiac disease, has
been also discussed.
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