230 research outputs found

    The relationship betweens math anxiety and arithmetic reasoning: The mediating role of working memory and self-competence

    Get PDF
    The complex interplay between cognitive and emotional factors at the base of maths achievement started to be evaluated and quantified in the last few years. Only a few studies, anyway, examine at the same time, the role of working memory (visuospatial and verbal subsystem) and maths anxiety together with self-competence, on maths attainment. To investigate the specific link between these three factors, in a large developmental sample, we enrol 335 students from the 3rd, 5th, and 7th grades. In respect to emotional and motivational factors, data indicates a direct influence of maths anxiety on maths performance. Furthermore, the results highlight that maths anxiety differently impacts working memory subsystems. In fact, we observe a significant and indirect effect of MA, through the visuospatial system, on maths achievement. Our results provide further support to the hypothesis that maths anxiety is a special type of anxiety, most likely impacting the visuospatial rather than the verbal working memory subsystem. Data is discussed in terms of a possible mechanism underlying maths anxiety and visuospatial working memory at the base of this specificity, and in relation to the role of self-competence in this interplay

    Noise, age and gender effects on speech intelligibility and sentence comprehension for 11- to 13-year-old children in real classrooms.

    Get PDF
    The present study aimed to investigate the effects of type of noise, age, and gender on children\u2019s speech intelligibility (SI) and sentence comprehension (SC). The experiment was conducted with 171 children between 11 and 13 years old in ecologically-valid conditions (collective presentation in real, reverberating classrooms). Two standardized tests were used to assess SI and SC. The two tasks were presented in three listening conditions: quiet; traffic noise; and classroom noise (non-intelligible noise with the same spectrum and temporal envelope of speech, plus typical classroom sound events). Both task performance accuracy and listening effort were considered in the analyses, the latter tracked by recording the response time (RT) using a single-task paradigm. Classroom noise was found to have the worst effect on both tasks (worsening task performance accuracy and slowing RTs), due to its spectro-temporal characteristics. A developmental effect was seen in the range of ages (11\u201313 years), which depended on the task and listening condition. Gender effects were also seen in both tasks, girls being more accurate and quicker to respond in most listening conditions. A significant interaction emerged between type of noise, age and task, indicating that classroom noise had a greater impact on RTs for SI than for SC. Overall, these results indicate that, for 11- to 13-year-old children, performance in SI and SC tasks is influenced by aspects relating to both the sound environment and the listener (age, gender). The presence of significant interactions between these factors and the type of task suggests that the acoustic conditions that guarantee optimal SI might not be equally adequate for SC. Our findings have implications for the development of standard requirements for the acoustic design of classrooms

    Intuitive geometry and visuospatial working memory in children showing symptoms of nonverbal learning disabilities.

    Get PDF
    Visuospatial working memory (VSWM) and intuitive geometry were examined in two groups aged 11-13, one with children displaying symptoms of nonverbal learning disability (NLD; n = 16), and the other, a control group without learning disabilities (n = 16). The two groups were matched for general verbal abilities, age, gender, and socioeconomic level. The children were presented with simple storage and complex-span tasks involving VSWM and with the intuitive geometry task devised by Dehaene, Izard, Pica, and Spelke (2006 ). Results revealed that the two groups differed in the intuitive geometry task. Differences were particularly evident in Euclidean geometry and in geometrical transformations. Moreover, the performance of NLD children was worse than controls to a larger extent in complex-span than in simple storage tasks, and VSWM differences were able to account for group differences in geometry. Finally, a discriminant function analysis confirmed the crucial role of complex-span tasks involving VSWM in distinguishing between the two groups. Results are discussed with reference to the relationship between VSWM and mathematics difficulties in nonverbal learning disabilities

    Эффективность комплексного лечения генитальной герпетической инфекции

    Get PDF
    Актуальность. В настоящее время увеличился рост заболеваемости генитальной герпетической инфекцией. Высокая распространенность ВПГ, полиморфизм заболевания, сложный патогенез инфекции составляют большую проблему для лечения и профилактики этого заболевания. Важным является назначить правильную тактику лечения таких заболеваний и ликвидацию рецидивов. Цель. Оценка эффективности применения комплексной антивирусной терапии при генитальной герпетической инфекции

    Synthetic ozone deposition and stomatal uptake at flux tower sites

    Get PDF
    We develop and evaluate a method to estimate O-3 deposition and stomatal O-3 uptake across networks of eddy covariance flux tower sites where O-3 concentrations and O-3 fluxes have not been measured. The method combines standard micrometeorological flux measurements, which constrain O-3 deposition velocity and stomatal conductance, with a gridded dataset of observed surface O-3 concentrations. Measurement errors are propagated through all calculations to quantify O-3 flux uncertainties. We evaluate the method at three sites with O(3 )flux measurements: Harvard Forest, Blodgett Forest, and Hyytiala Forest. The method reproduces 83 % or more of the variability in daily stomatal uptake at these sites with modest mean bias (21 % or less). At least 95 % of daily average values agree with measurements within a factor of 2 and, according to the error analysis, the residual differences from measured O-3 fluxes are consistent with the uncertainty in the underlying measurements. The product, called synthetic O-3 flux or SynFlux, includes 43 FLUXNET sites in the United States and 60 sites in Europe, totaling 926 site years of data. This dataset, which is now public, dramatically expands the number and types of sites where O-3 fluxes can be used for ecosystem impact studies and evaluation of air quality and climate models. Across these sites, the mean stomatal conductance and O-3 deposition velocity is 0.03-1.0 cm s(-1). The stomatal O-3 flux during the growing season (typically April-September) is 0.5-11.0 nmol O-3 m(-2) s(-1) with a mean of 4.5 nmol O(3 )m(-2) s(-1) and the largest fluxes generally occur where stomatal conductance is high, rather than where O-3 concentrations are high. The conductance differences across sites can be explained by atmospheric humidity, soil moisture, vegetation type, irrigation, and land management. These stomatal fluxes suggest that ambient O-3 degrades biomass production and CO2 sequestration by 20 %-24 % at crop sites, 6 %-29 % at deciduous broadleaf forests, and 4 %-20 % at evergreen needleleaf forests in the United States and Europe.Peer reviewe

    Individual Differences, Economic Stability, and Fear of Contagion as Risk Factors for PTSD Symptoms in the COVID-19 Emergency

    Get PDF
    On January 30th 2020, the World Health Organization (WHO) declared the COVID-19 pandemic a Public Health Emergency of International Concern (PHEIC). Italy has been one of the most affected countries in the world. To contain further spread of the virus, the Italian government has imposed an unprecedented long-period lockdown for the entire country. This dramatic scenario may have caused a strong psychological distress, with potential negative long-term mental health consequences. The aim of the present study is to report the prevalence of high psychological distress due to the COVID-19 pandemic on the general population, especially considering that this aspect is consistently associated with PTSD symptoms. Furthermore, the present study aims to identify the risk factors for high PTSD symptoms, including individual differences and subjective perception of both economic and psychological aspects. We administered an online survey to 1253 participants during the peak period of the contagion in Italy. A logistic regression on the Impact of Event Scale – Revised (IES-R) scores was used to test the risk factors that predict the possibility to develop PTSD symptoms due to the COVID-19 pandemic. Gender (female), lower perceived economic stability, higher neuroticism, and fear and consequences of contagion were predictors of high PTSD symptomatology. The results, highlighted in the present study, extend our understanding of the COVID-19 pandemic’s impact on the population’s mental health, by identifying individuals at high-risk of developing PTSD. This may help with the implementation of specific protocols to prevent the possibility of developing symptoms of PTSD in target populations

    Evaluation of the LSA-SAF gross primary production product derived from SEVIRI/MSG data (MGPP)

    Get PDF
    The objective of this study is to describe a completely new 10-day gross primary production (GPP) product (MGPP LSA-411) based on data from the geostationary SEVIRI/MSG satellite within the LSA SAF (Land Surface Analysis SAF) as part of the SAF (Satellite Application Facility) network of EUMETSAT. The methodology relies on the Monteith approach. It considers that GPP is proportional to the absorbed photosynthetically active radiation APAR and the proportionality factor is known as the light use efficiency ε. A parameterization of this factor is proposed as the product of a εmax, corresponding to the canopy functioning under optimal conditions, and a coefficient quantifying the reduction of photosynthesis as a consequence of water stress. A three years data record (2015–2017) was used in an assessment against site-level eddy covariance (EC) tower GPP estimates and against other Earth Observation (EO) based GPP products. The site-level comparison indicated that the MGPP product performed better than the other EO based GPP products with 48% of the observations being below the optimal accuracy (absolute error < 1.0 g m−2 day−1) and 75% of these data being below the user requirement threshold (absolute error < 3.0 g m−2 day−1). The largest discrepancies between the MGPP product and the other GPP products were found for forests whereas small differences were observed for the other land cover types. The integration of this GPP product with the ensemble of LSA-SAF MSG products is conducive to meet user needs for a better understanding of ecosystem processes and for improved understanding of anthropogenic impact on ecosystem services.The objective of this study is to describe a completely new 10-day gross primary production (GPP) product (MGPP LSA-411) based on data from the geostationary SEVIRI/MSG satellite within the LSA SAF (Land Surface Analysis SAF) as part of the SAF (Satellite Application Facility) network of EUMETSAT. The methodology relies on the Monteith approach. It considers that GPP is proportional to the absorbed photosynthetically active radiation APAR and the proportionality factor is known as the light use efficiency epsilon. A parameterization of this factor is proposed as the product of a epsilon(max), corresponding to the canopy functioning under optimal conditions, and a coefficient quantifying the reduction of photosynthesis as a consequence of water stress. A three years data record (2015-2017) was used in an assessment against site-level eddy covariance (EC) tower GPP estimates and against other Earth Observation (EO) based GPP products. The site-level comparison indicated that the MGPP product performed better than the other EO based GPP products with 48% of the observations being below the optimal accuracy (absolute error <1.0 g m(-2) day(-1)) and 75% of these data being below the user requirement threshold (absolute error <3.0 g m(-2) day(-1)). The largest discrepancies between the MGPP product and the other GPP products were found for forests whereas small differences were observed for the other land cover types. The integration of this GPP product with the ensemble of LSA-SAF MSG products is conducive to meet user needs for a better understanding of ecosystem processes and for improved understanding of anthropogenic impact on ecosystem services.Peer reviewe

    Characterization of a boreal convective boundary layer and its impact on atmospheric chemistry during HUMPPA-COPEC-2010

    Get PDF
    We studied the atmospheric boundary layer (ABL) dynamics and the impact on atmospheric chemistry during the HUMPPA-COPEC-2010 campaign. We used vertical profiles of potential temperature and specific moisture, obtained from 132 radio soundings, to determine the main boundary layer characteristics during the campaign. We propose a classification according to several main ABL prototypes. Further, we performed a case study of a single day, focusing on the convective boundary layer, to analyse the influence of the dynamics on the chemical evolution of the ABL. We used a mixed layer model, initialized and constrained by observations. In particular, we investigated the role of large scale atmospheric dynamics (subsidence and advection) on the ABL development and the evolution of chemical species concentrations. We find that, if the large scale forcings are taken into account, the ABL dynamics are represented satisfactorily. Subsequently, we studied the impact of mixing with a residual layer aloft during the morning transition on atmospheric chemistry. The time evolution of NOx and O3 concentrations, including morning peaks, can be explained and accurately simulated by incorporating the transition of the ABL dynamics from night to day. We demonstrate the importance of the ABL height evolution for the representation of atmospheric chemistry. Our findings underscore the need to couple the dynamics and chemistry at different spatial scales (from turbulence to mesoscale) in chemistry-transport models and in the interpretation of observational data
    corecore