53 research outputs found

    The first observed stellar occultations by the irregular satellite Phoebe (Saturn IX) and improved rotational period

    Get PDF
    peer reviewedWe report six stellar occultations by Phoebe (Saturn IX), an irregular satellite of Saturn, obtained between mid-2017 and mid-2019. The 2017 July 6 event was the first stellar occultation by an irregular satellite ever observed. The occultation chords were compared to a 3D shape model of the satellite obtained from Cassini observations. The rotation period available in the literature led to a sub-observer point at the moment of the observed occultations where the chords could not fit the 3D model. A procedure was developed to identify the correct sub-observer longitude. It allowed us to obtain the rotation period with improved precision compared to the currently known value from literature. We show that the difference between the observed and the predicted sub-observer longitude suggests two possible solutions for the rotation period. By comparing these values with recently observed rotational light curves and single- chord stellar occultations, we can identify the best solution for Phoebe's rotational period as 9.27365 ± 0.00002 h. From the stellar occultations, we also obtained six geocentric astrometric positions in the ICRS as realized by the Gaia DR2 with uncertainties at the 1-mas level

    Diagnostic value of plasma p-tau181, NfL, and GFAP in a clinical setting cohort of prevalent neurodegenerative dementias

    Get PDF
    Background: Increasing evidence supports the use of plasma biomarkers of neurodegeneration and neuroinflammation to screen and diagnose patients with dementia. However, confirmatory studies are required to demonstrate their usefulness in the clinical setting. Methods: We evaluated plasma and cerebrospinal fluid (CSF) samples from consecutive patients with frontotemporal dementia (FTD) (n = 59), progressive supranuclear palsy (PSP) (n = 31), corticobasal syndrome (CBS) (n = 29), dementia with Lewy bodies (DLB) (n = 49), Alzheimer disease (AD) (n = 97), and suspected non-AD physiopathology (n = 51), as well as plasma samples from 60 healthy controls (HC). We measured neurofilament light chain (NfL), phospho-tau181 (p-tau181), and glial fibrillary acid protein (GFAP) using Simoa (all plasma biomarkers and CSF GFAP), CLEIA (CSF p-tau181), and ELISA (CSF NfL) assays. Additionally, we stratified patients according to the A/T/N classification scheme and the CSF α-synuclein real-time quaking-induced conversion assay (RT-QuIC) results. Results: We found good correlations between CSF and plasma biomarkers for NfL (rho = 0.668, p < 0.001) and p-tau181 (rho = 0.619, p < 0.001). Plasma NfL was significantly higher in disease groups than in HC and showed a greater increase in FTD than in AD [44.9 (28.1–68.6) vs. 21.9 (17.0–27.9) pg/ml, p < 0.001]. Conversely, plasma p-tau181 and GFAP levels were significantly higher in AD than in FTD [3.2 (2.4–4.3) vs. 1.1 (0.7–1.6) pg/ml, p < 0.001; 404.7 (279.7–503.0) vs. 198.2 (143.9–316.8) pg/ml, p < 0.001]. GFAP also allowed discriminating disease groups from HC. In the distinction between FTD and AD, plasma p-tau181 showed better accuracy (AUC 0.964) than NfL (AUC 0.791) and GFAP (AUC 0.818). In DLB and CBS, CSF amyloid positive (A+) subjects had higher plasma p-tau181 and GFAP levels than A− individuals. CSF RT-QuIC showed positive α-synuclein seeding activity in 96% DLB and 15% AD patients with no differences in plasma biomarker levels in those stratified by RT-QuIC result. Conclusions: In a single-center clinical cohort, we confirm the high diagnostic value of plasma p-tau181 for distinguishing FTD from AD and plasma NfL for discriminating degenerative dementias from HC. Plasma GFAP alone differentiates AD from FTD and neurodegenerative dementias from HC but with lower accuracy than p-tau181 and NfL. In CBS and DLB, plasma p-tau181 and GFAP levels are significantly influenced by beta-amyloid pathology

    Physical properties of Centaur (60558) 174P/Echeclus from stellar occultations

    Full text link
    The Centaur (60558) Echeclus was discovered on March 03, 2000, orbiting between the orbits of Jupiter and Uranus. After exhibiting frequent outbursts, it also received a comet designation, 174P. If the ejected material can be a source of debris to form additional structures, studying the surroundings of an active body like Echeclus can provide clues about the formation scenarios of rings, jets, or dusty shells around small bodies. Stellar occultation is a handy technique for this kind of investigation, as it can, from Earth-based observations, detect small structures with low opacity around these objects. Stellar occultation by Echeclus was predicted and observed in 2019, 2020, and 2021. We obtain upper detection limits of rings with widths larger than 0.5 km and optical depth of τ\tau = 0.02. These values are smaller than those of Chariklo's main ring; in other words, a Chariklo-like ring would have been detected. The occultation observed in 2020 provided two positive chords used to derive the triaxial dimensions of Echeclus based on a 3D model and pole orientation available in the literature. We obtained a=37.0±0.6a = 37.0\pm0.6 km, b=28.4±0.5b = 28.4 \pm 0.5 km, and c=24.9±0.4c= 24.9 \pm 0.4 km, resulting in an area-equivalent radius of 30.0±0.530.0 \pm 0.5 km. Using the projected limb at the occultation epoch and the available absolute magnitude (Hv=9.971±0.031\rm{H}_{\rm{v}} = 9.971 \pm 0.031), we calculate an albedo of pv=0.050±0.003p_{\rm{v}} = 0.050 \pm 0.003. Constraints on the object's density and internal friction are also proposed.Comment: Corrected and typeset versio

    In situ redox reactions facilitate the assembly of a mixed-valence metal-organic nanocapsule

    Get PDF
    C-alkylpyrogallol[4]arenes (PgCs) have been studied for their ability to form metal-organic nanocapsules (MONCs) through coordination to appropriate metal ions. Here we present the synthesis and characterization of an MnII/MnIII-seamed MONC in addition to its electrochemical and magnetic behavior. This MONC assembles from 24 manganese ions and 6 PgCs, while an additional metal ion is located on the capsule interior, anchored through the introduction of bridging nitrite ions. The latter originate from an in situ redox reaction that occurs during the self-assembly process, thus representing a new route to otherwise unobtainable nanocapsules

    A large topographic feature on the surface of the trans-Neptunian object (307261) 2002 MS4_4 measured from stellar occultations

    Full text link
    This work aims at constraining the size, shape, and geometric albedo of the dwarf planet candidate 2002 MS4 through the analysis of nine stellar occultation events. Using multichord detection, we also studied the object's topography by analyzing the obtained limb and the residuals between observed chords and the best-fitted ellipse. We predicted and organized the observational campaigns of nine stellar occultations by 2002 MS4 between 2019 and 2022, resulting in two single-chord events, four double-chord detections, and three events with three to up to sixty-one positive chords. Using 13 selected chords from the 8 August 2020 event, we determined the global elliptical limb of 2002 MS4. The best-fitted ellipse, combined with the object's rotational information from the literature, constrains the object's size, shape, and albedo. Additionally, we developed a new method to characterize topography features on the object's limb. The global limb has a semi-major axis of 412 ±\pm 10 km, a semi-minor axis of 385 ±\pm 17 km, and the position angle of the minor axis is 121 ^\circ ±\pm 16^\circ. From this instantaneous limb, we obtained 2002 MS4's geometric albedo and the projected area-equivalent diameter. Significant deviations from the fitted ellipse in the northernmost limb are detected from multiple sites highlighting three distinct topographic features: one 11 km depth depression followed by a 255+4^{+4}_{-5} km height elevation next to a crater-like depression with an extension of 322 ±\pm 39 km and 45.1 ±\pm 1.5 km deep. Our results present an object that is \approx138 km smaller in diameter than derived from thermal data, possibly indicating the presence of a so-far unknown satellite. However, within the error bars, the geometric albedo in the V-band agrees with the results published in the literature, even with the radiometric-derived albedo

    NucTools: analysis of chromatin feature occupancy profiles from high-throughput sequencing data

    Get PDF
    Background: Biomedical applications of high-throughput sequencing methods generate a vast amount of data in which numerous chromatin features are mapped along the genome. The results are frequently analysed by creating binary data sets that link the presence/absence of a given feature to specific genomic loci. However, the nucleosome occupancy or chromatin accessibility landscape is essentially continuous. It is currently a challenge in the field to cope with continuous distributions of deep sequencing chromatin readouts and to integrate the different types of discrete chromatin features to reveal linkages between them. Results: Here we introduce the NucTools suite of Perl scripts as well as MATLAB- and R-based visualization programs for a nucleosome-centred downstream analysis of deep sequencing data. NucTools accounts for the continuous distribution of nucleosome occupancy. It allows calculations of nucleosome occupancy profiles averaged over several replicates, comparisons of nucleosome occupancy landscapes between different experimental conditions, and the estimation of the changes of integral chromatin properties such as the nucleosome repeat length. Furthermore, NucTools facilitates the annotation of nucleosome occupancy with other chromatin features like binding of transcription factors or architectural proteins, and epigenetic marks like histone modifications or DNA methylation. The applications of NucTools are demonstrated for the comparison of several datasets for nucleosome occupancy in mouse embryonic stem cells (ESCs) and mouse embryonic fibroblasts (MEFs). Conclusions: The typical workflows of data processing and integrative analysis with NucTools reveal information on the interplay of nucleosome positioning with other features such as for example binding of a transcription factor CTCF, regions with stable and unstable nucleosomes, and domains of large organized chromatin K9me2 modifications (LOCKs). As potential limitations and problems we discuss how inter-replicate variability of MNase-seq experiments can be addressed

    Physical properties of Centaur (60558) 174P/Echeclus from stellar occultations

    Full text link
    peer reviewedThe Centaur (60558) Echeclus was discovered on 2000 March 03, orbiting between the orbits of Jupiter and Uranus. After exhibiting frequent outbursts, it also received a comet designation, 174P. If the ejected material can be a source of debris to form additional structures, studying the surroundings of an active body like Echeclus can provide clues about the formation scenarios of rings, jets, or dusty shells around small bodies. Stellar occultation is a handy technique for this kind of investigation, as it can, from Earth-based observations, detect small structures with low opacity around these objects. Stellar occultation by Echeclus was predicted and observed in 2019, 2020, and 2021. We obtain upper detection limits of rings with widths larger than 0.5 km and optical depth of τ = 0.02. These values are smaller than those of Chariklo's main ring; in other words, a Chariklo-like ring would have been detected. The occultation observed in 2020 provided two positive chords used to derive the triaxial dimensions of Echeclus based on a 3D model and pole orientation available in the literature. We obtained a = 37.0 ± 0.6 km, b = 28.4 ± 0.5 km, and c = 24.9 ± 0.4 km, resulting in an area-equivalent radius of 30.0 ± 0.5 km. Using the projected limb at the occultation epoch and the available absolute magnitude (Hv= 9.971 +- 0.031), we calculate an albedo of pv = 0.050 ± 0.003. Constraints on the object's density and internal friction are also proposed

    Results on stellar occultations by (307261) 2002 MS4

    Get PDF
    Transneptunian Objects (TNOs) are the remnants of our planetary system and can retain information about the early stages of the Solar System formation. Stellar occultation is a groundbased method used to study these distant bodies which have been presenting exciting results mainly about their physical properties. The big TNO called 2002 MS4 was discovered by Trujillo, C. A., & Brown, M. E., in 2002 using observations made at the Palomar Observatory (EUA). It is classified as a hot classical TNO, with orbital parameters a = 42 AU, e = 0.139, and i = 17.7º. Using thermal measurements with PACS (Herschel) and MIPS (Spitzer Space Telescope) instruments, Vilenius et al. 2012 obtained a radius of 467 +/- 23.5 km and an albedo of 0.051.Predictions of stellar occultations by this body in 2019 were obtained using the Gaia DR2 catalogue and NIMA ephemeris (Desmars et al. 2015) and made available in the Lucky Star web page (https://lesia.obspm.fr/lucky-star/). Four events were observed in South America and Canada. The first stellar occultation was detected on 09 July 2019, resulting in two positives and four negatives chords, including a close one which proven to be helpful to constrain the body’s size. This detection also allowed us to obtain a precise astrometric position that was used to update its ephemeris and improve the predictions of the following events. Two of them were detected on 26 July 2019, separated by eight hours. The first event was observed from South America and resulted in three positive detections, while the second, observed from Canada, resulted in a single chord. Another double chord event was observed on 19 August 2019 also from Canada.Facultad de Ciencias Astronómicas y Geofísica
    corecore