22 research outputs found

    RASOnD - A comprehensive resource and search tool for RAS superfamily oncogenes from various species

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Ras superfamily plays an important role in the control of cell signalling and division. Mutations in the Ras genes convert them into active oncogenes. The Ras oncogenes form a major thrust of global cancer research as they are involved in the development and progression of tumors. This has resulted in the exponential growth of data on Ras superfamily across different public databases and in literature. However, no dedicated public resource is currently available for data mining and analysis on this family. The present database was developed to facilitate straightforward accession, retrieval and analysis of information available on Ras oncogenes from one particular site.</p> <p>Description</p> <p>We have developed the RAS Oncogene Database (RASOnD) as a comprehensive knowledgebase that provides integrated and curated information on a single platform for oncogenes of Ras superfamily. RASOnD encompasses exhaustive genomics and proteomics data existing across diverse publicly accessible databases. This resource presently includes overall 199,046 entries from 101 different species. It provides a search tool to generate information about their nucleotide and amino acid sequences, single nucleotide polymorphisms, chromosome positions, orthologies, motifs, structures, related pathways and associated diseases. We have implemented a number of user-friendly search interfaces and sequence analysis tools. At present the user can (i) browse the data (ii) search any field through a simple or advance search interface and (iii) perform a BLAST search and subsequently CLUSTALW multiple sequence alignment by selecting sequences of Ras oncogenes. The Generic gene browser, GBrowse, JMOL for structural visualization and TREEVIEW for phylograms have been integrated for clear perception of retrieved data. External links to related databases have been included in RASOnD.</p> <p>Conclusions</p> <p>This database is a resource and search tool dedicated to Ras oncogenes. It has utility to cancer biologists and cell molecular biologists as it is a ready source for research, identification and elucidation of the role of these oncogenes. The data generated can be used for understanding the relationship between the Ras oncogenes and their association with cancer. The database updated monthly is freely accessible online at <url>http://202.141.47.181/rasond/</url> and <url>http://www.aiims.edu/RAS.html</url>.</p

    P19 H-Ras Induces G1/S Phase Delay Maintaining Cells in a Reversible Quiescence State

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution License.[Background]: Three functional c-ras genes, known as c-H-ras, c-K-ras, and c-N-ras, have been largely studied in mammalian cells with important insights into normal and tumorigenic cellular signal transduction events. Two K-Ras mRNAs are obtained from the same pre-mRNA by alternative splicing. H-Ras pre-mRNA can also be alternatively spliced in the IDX and 4A terminal exons, yielding the p19 and p21 proteins, respectively. However, despite the Ras gene family’s established role in tumorigenic cellular signal transduction events, little is known about p19 function. Previous results showed that p19 did not interact with two known p21 effectors, Raf1 and Rin1, but was shown to interact with RACK1, a scaffolding protein that promotes multi-protein complexes in different signaling pathways (Cancer Res 2003, 63 p5178). This observation suggests that p19 and p21 play differential and complementary roles in the cell.[Principal Findings]: We found that p19 regulates telomerase activity through its interaction with p73a/b proteins. We also found that p19 overexpression induces G1/S phase delay; an observation that correlates with hypophosphorylation of both Akt and p70SK6. Similarly, we also observed that FOXO1 is upregulated when p19 is overexpressed. The three observations of (1) hypophosphorylation of Akt, (2) G1/S phase delay and (3) upregulation of FOXO1 lead us to conclude that p19 induces G1/S phase delay, thereby maintaining cells in a reversible quiescence state and preventing entry into apoptosis. We then assessed the effect of p19 RNAi on HeLa cell growth and found that p19 RNAi increases cell growth, thereby having the opposite effect of arrest of the G1/S phase or producing a cellular quiescence state.[Significance]: Interestingly, p19 induces FOXO1 that in combination with the G1/S phase delay and hypophosphorylation of both Akt and p70SK6 leads to maintenance of a reversible cellular quiescence state, thereby preventing entry into apoptosis.This work was supported by Fundacion de Investigacion Medica Mutua Madrileña Automovilista (Fundacion MMA), the Plan Nacional (MEC) BFU2005-00701 and the Fundacion Eugenio Rodriguez Pascual. M.C. was a recipient of a Fmed MMA fellowship.Peer reviewe

    Lack of evidence for KRAS oncogenic mutations in triple-negative breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mutational analysis of the <it>KRAS </it>gene has recently been established as a complementary <it>in vitro </it>diagnostic tool for the identification of patients with colorectal cancer who will not benefit from anti-epidermal growth factor receptor (EGFR) therapies. Assessment of the mutation status of <it>KRAS </it>might also be of potential relevance in other EGFR-overexpressing tumors, such as those occurring in breast cancer. Although <it>KRAS </it>is mutated in only a minor fraction of breast tumors (5%), about 60% of the basal-like subtype express EGFR and, therefore could be targeted by EGFR inhibitors. We aimed to study the mutation frequency of <it>KRAS </it>in that subtype of breast tumors to provide a molecular basis for the evaluation of anti-EGFR therapies.</p> <p>Methods</p> <p>Total, genomic DNA was obtained from a group of 35 formalin-fixed paraffin-embedded, triple-negative breast tumor samples. Among these, 77.1% (27/35) were defined as basal-like by immunostaining specific for the established surrogate markers cytokeratin (CK) 5/6 and/or EGFR. <it>KRAS </it>mutational status was determined in the purified DNA samples by Real Time (RT)-PCR using primers specific for the detection of wild-type <it>KRAS </it>or the following seven oncogenic somatic mutations: Gly12Ala, Gly12Asp, Gly12Arg, Gly12Cys, Gly12Ser, Gly12Val and Gly13Asp.</p> <p>Results</p> <p>We found no evidence of <it>KRAS </it>oncogenic mutations in all analyzed tumors.</p> <p>Conclusions</p> <p>This study indicates that <it>KRAS </it>mutations are very infrequent in triple-negative breast tumors and that EGFR inhibitors may be of potential benefit in the treatment of basal-like breast tumors, which overexpress EGFR in about 60% of all cases.</p

    Invasive melanoma in Cdk4-targeted mice

    No full text
    Many human tumors harbor mutations that result in deregulation of Cdk4 activity. Most of these mutations involve overexpression of D-type cyclins and inactivation of INK4 inhibitors. In addition, a mutation in the Cdk4 protein has been described in patients with familial melanoma (Wolfel, T., Hauer, M., Schneider, J., Serrano, M., Wolfel, C., et al. (1995) Science 269, 1281–1284; Zuo, L., Weger, J., Yang, Q., Goldstein, A. M., Tucker, M. A., et al. (1996) Nat. Genet. 12, 97–99). This mutation, R24C, renders the Cdk4 protein insensitive to inhibition by INK4 proteins including p16(INK4a), a major candidate for the melanoma susceptibility locus. Here we show that knock-in mice expressing a Cdk4 R24C allele are highly susceptible to melanoma development after specific carcinogenic treatments. These tumors do not have mutations in the p19(ARF)/p53 pathway, suggesting a specific involvement of the p16(INK4a)/Cdk4/Rb pathway in melanoma development. Moreover, by using targeted mice deficient for other INK4 inhibitors, we show that deletion of p18(INK4c) but not of p15(INK4b) confers proliferative advantage to melanocytic tumor growth. These results provide an experimental scenario to study the role of Cdk4 regulation in melanoma and to develop novel therapeutic approaches to control melanoma progression

    NRAS mutation causes a human autoimmune lymphoproliferative syndrome

    No full text
    The p21 RAS subfamily of small GTPases, including KRAS, HRAS, and NRAS, regulates cell proliferation, cytoskeletal organization, and other signaling networks, and is the most frequent target of activating mutations in cancer. Activating germline mutations of KRAS and HRAS cause severe developmental abnormalities leading to Noonan, cardio-facial-cutaneous, and Costello syndrome, but activating germline mutations of NRAS have not been reported. Autoimmune lymphoproliferative syndrome (ALPS) is the most common genetic disease of lymphocyte apoptosis and causes autoimmunity as well as excessive lymphocyte accumulation, particularly of CD4−, CD8− αβ T cells. Mutations in ALPS typically affect CD95 (Fas/APO-1)-mediated apoptosis, one of the extrinsic death pathways involving TNF receptor superfamily proteins, but certain ALPS individuals have no such mutations. We show here that the salient features of ALPS as well as a predisposition to hematological malignancies can be caused by a heterozygous germline Gly13Asp activating mutation of the NRAS oncogene that does not impair CD95-mediated apoptosis. The increase in active, GTP-bound NRAS augments RAF/MEK/ERK signaling, which markedly decreases the proapoptotic protein BIM and attenuates intrinsic, nonreceptor-mediated mitochondrial apoptosis. Thus, germline activating mutations in NRAS differ from other p21 Ras oncoproteins by causing selective immune abnormalities without general developmental defects. Our observations on the effects of NRAS activation indicate that RAS-inactivating drugs, such as farnesyltransferase inhibitors should be examined in human autoimmune and lymphocyte homeostasis disorders
    corecore