31 research outputs found

    Status of three-neutrino oscillations after the SNO-salt data

    Get PDF
    We perform a global analysis of neutrino oscillation data in the framework of three neutrinos, including the recent improved measurement of the neutral current events at SNO. In addition to all current solar neutrino data we take into account the reactor neutrino data from KamLAND and CHOOZ, the atmospheric neutrino data from Super-Kamiokande and MACRO, as well as the first spectral data from the K2K long baseline accelerator experiment. The up-to-date best fit values and allowed ranges of the three-flavour oscillation parameters are determined from these data. Furthermore, we discuss in detail the status of the small parameters alpha = Delta_m^2_Sol / Delta_m^2_Atm and sin^2(theta_13), which fix the possible strength of CP violating effects in neutrino oscillations.Comment: 16 pages, LaTeX file using RevTEX4, 10 figures and 1 table included. The conclusions reached in version 1 regarding the restriction on sin^2(theta_13) are now corrected, the solar bound is weaker than that from reactors even after the inclusion of the SNO salt data. In addition the full data set has now been reanalized using the pull method instead of the standard chi-square approach. A few references have also been adde

    S_3-flavour symmetry as realized in lepton flavour violating processes

    Full text link
    A variety of lepton flavour violating effects related to the recent discovery of neutrino oscillations and mixings is here systematically discussed in terms of an S_3-flavour permutational symmetry. After a brief review of some relevant results on lepton masses and mixings, that had been derived in the framework of a Minimal S_3-Invariant Extension of the Standard Model, we derive explicit analytical expressions for the matrices of the Yukawa couplings and compute the branching ratios of some selected flavour changing neutral current (FCNC) processes, as well as, the contribution of the exchange of neutral flavour changing scalars to the anomaly of the muon's magnetic moment as functions of the masses of the charged leptons and the neutral Higgs bosons. We find that the S_3 x Z_2 flavour symmetry and the strong mass hierarchy of the charged leptons strongly suppress the FCNC processes in the leptonic sector well below the present experimental upper bounds by many orders of magnitude. The contribution of FCNC to the anomaly of the muon's magnetic moment is small but non-negligible.Comment: 23 pages, one figure. To appear in J. Phys A: Mathematical and Theoretical (SPE QTS5

    Status of global fits to neutrino oscillations

    Get PDF
    We review the present status of global analyses of neutrino oscillations, taking into account the most recent neutrino data including the latest KamLAND and K2K updates presented at Neutrino2004, as well as state-of-the-art solar and atmospheric neutrino flux calculations. We give the two-neutrino solar + KamLAND results, as well as two-neutrino atmospheric + K2K oscillation regions, discussing in each case the robustness of the oscillation interpretation against departures from the Standard Solar Model and the possible existence of non-standard neutrino physics. Furthermore, we give the best fit values and allowed ranges of the three-flavour oscillation parameters from the current worlds' global neutrino data sample and discuss in detail the status of the small parameters \alpha \equiv \Dms/\Dma as well as sin2θ13\sin^2\theta_{13}, which characterize the strength of CP violating effects in neutrino oscillations. We also update the degree of rejection of four-neutrino interpretations of the LSND anomaly in view of the most recent developments.Comment: v6: In the last Appendix we provide updated neutrino oscillation results which take into account the relevant oscillation data released by the MINOS and KamLAND collaboration

    Impact of Fermion Mass Degeneracy on Flavor Mixing

    Full text link
    We carry out a systematic analysis of flavor mixing and CP violation in the conceptually interesting limit where two quarks or leptons of the same charge are degenerate in mass. We pay some particular attention to the impact of neutrino mass degeneracy and Majorana phase degeneracy on the lepton flavor mixing matrix.Comment: 14 page

    Three-flavour neutrino oscillation update

    Get PDF
    We review the present status of three-flavour neutrino oscillations, taking into account the latest available neutrino oscillation data presented at the Neutrino 2008 Conference. This includes the data released this summer by the MINOS collaboration, the data of the neutral current counter phase of the SNO solar neutrino experiment, as well as the latest KamLAND and Borexino data. We give the updated determinations of the leading 'solar' and 'atmospheric' oscillation parameters. We find from global data that the mixing angle θ13\theta_{13} is consistent with zero within 0.9σ0.9\sigma and we derive an upper bound of sin2θ13<0.035(0.056)\sin^2\theta_{13} < 0.035 (0.056) at 90% CL (3σ\sigma).Comment: 17 pages, 7 figures. An appendix is added providing three-neutrino parameter determinations as of February 2010. We include all oscillation data, such as the first MINOS electron neutrino appearance data, the low energy threshold analysis given by the SNO Collaboration, as well as recently updated Standard Solar Model

    Bilinear R-parity violation with flavor symmetry

    Get PDF
    Bilinear R-parity violation (BRPV) provides the simplest intrinsically supersymmetric neutrino mass generation scheme. While neutrino mixing parameters can be probed in high energy accelerators, they are unfortunately not predicted by the theory. Here we propose a model based on the discrete flavor symmetry A4A_4 with a single R-parity violating parameter, leading to (i) correct Cabbibo mixing given by the Gatto-Sartori-Tonin formula, and a successful unification-like b-tau mass relation, and (ii) a correlation between the lepton mixing angles θ13\theta_{13} and θ23\theta_{23} in agreement with recent neutrino oscillation data, as well as a (nearly) massless neutrino, leading to absence of neutrinoless double beta decay.Comment: 16 pages, 3 figures. Extended version, as published in JHE

    Equilibrium properties of self-interacting neutrinos in the quasi-particle approach

    Get PDF
    In this work a neutrino gas in equilibrium is studied both at T=0 and at finite temperature. Neutrinos are treated as massive Dirac quasi-particles with two generations. We include self-interactions among the neutrinos via neutral currents, as well as the interaction with a background of matter. To obtain the equilibrium properties we use Wigner function techniques. To account for corrections beyond the Hartree approximation, we also introduce correlation functions. We prove that, under the quasi-particle approximation, these correlation functions can be expressed as products of Wigner functions. We analyze the main properties of the neutrino eigenmodes in the medium, such as effective masses and mixing angle. We show that the formulae describing these quantities will differ with respect to the case with no self-interactions.Comment: 17 pages, no figure

    A See-Saw S4S_4 model for fermion masses and mixings

    Full text link
    We present a supersymmetric see-saw S4S_4 model giving rise to the most general neutrino mass matrix compatible with Tri-Bimaximal mixing. We adopt the S4×Z5S_4\times Z_5 flavour symmetry, broken by suitable vacuum expectation values of a small number of flavon fields. We show that the vacuum alignment is a natural solution of the most general superpotential allowed by the flavour symmetry, without introducing any soft breaking terms. In the charged lepton sector, mass hierarchies are controlled by the spontaneous breaking of the flavour symmetry caused by the vevs of one doublet and one triplet flavon fields instead of using the Froggatt-Nielsen U(1) mechanism. The next to leading order corrections to both charged lepton mass matrix and flavon vevs generate corrections to the mixing angles as large as O(λC2){\cal O}(\lambda_C^2). Applied to the quark sector, the symmetry group S4×Z5S_4\times Z_5 can give a leading order VCKMV_{CKM} proportional to the identity as well as a matrix with O(1){\cal O}(1) coefficients in the Cabibbo 2×22\times 2 submatrix. Higher order corrections produce non vanishing entries in the other VCKMV_{CKM} entries which are generically of O(λC2){\cal O}(\lambda_C^2).Comment: 30 pages, 3 figures, minor changes to match the published versio
    corecore