62 research outputs found
Divergent pathogenetic outcomes in BALB/c mice following Omicron subvariant infection
Following the emergence of B.1.1.529 Omicron, the SARS-CoV-2 virus evolved into a significant number of sublineage variants that possessed numerous mutations throughout the genome, but particularly within the spike glycoprotein (S) gene. For example, the BQ.1.1 and the XBB.1 and XBB.1.5 subvariants contained 34 and 41 mutations in S, respectively. However, these variants elicited largely replication only or mild disease phenotypes in mice. To better model pathogenic outcomes and measure countermeasure performance, we developed mouse adapted versions (BQ.1.1 MA; XBB.1 MA; XBB.1.5 MA) that reflect more pathogenic acute phase pulmonary disease symptoms of SARS-CoV-2, as well as derivative strains expressing nano-luciferase (nLuc) in place of ORF7 (BQ.1.1 nLuc; XBB.1 nLuc; XBB.1.5 nLuc). Amongst the mouse adapted (MA) viruses, a wide range of disease outcomes were observed including mortality, weight loss, lung dysfunction, and tissue viral loads in the lung and nasal turbinates. Intriguingly, XBB.1 MA and XBB.1.5 MA strains, which contained identical mutations throughout except at position F486S/P in S, exhibited divergent disease outcomes in mice (Ao et al., 2023). XBB.1.5 MA infection was associated with significant weight loss and ∼45 % mortality across two independent studies, while XBB.1 MA infected animals suffered from mild weight loss and only 10 % mortality across the same two independent studies. Additionally, the development and use of nanoluciferase expressing strains provided moderate throughput for live virus neutralization assays. The availability of small animal models for the assessment of Omicron VOC disease potential will enable refined capacity to evaluate the efficacy of on market and pre-clinical therapeutics and interventions
SARS-CoV-2 variant of concern fitness and adaptation in primary human airway epithelia
The severe acute respiratory syndrome coronavirus 2 pandemic is characterized by the emergence of novel variants of concern (VOCs) that replace ancestral strains. Here, we dissect the complex selective pressures by evaluating variant fitness and adaptation in human respiratory tissues. We evaluate viral properties and host responses to reconstruct forces behind D614G through Omicron (BA.1) emergence. We observe differential replication in airway epithelia, differences in cellular tropism, and virus-induced cytotoxicity. D614G accumulates the most mutations after infection, supporting zoonosis and adaptation to the human airway. We perform head-to-head competitions and observe the highest fitness for Gamma and Delta. Under these conditions, RNA recombination favors variants encoding the B.1.617.1 lineage 3′ end. Based on viral growth kinetics, Alpha, Gamma, and Delta exhibit increased fitness compared to D614G. In contrast, the global success of Omicron likely derives from increased transmission and antigenic variation. Our data provide molecular evidence to support epidemiological observations of VOC emergence
Projected WIMP sensitivity of the LUX-ZEPLIN dark matter experiment
LUX-ZEPLIN (LZ) is a next-generation dark matter direct detection experiment that will operate 4850 feet underground at the Sanford Underground Research Facility (SURF) in Lead, South Dakota, USA. Using a two-phase xenon detector with an active mass of 7 tonnes, LZ will search primarily for low-energy interactions with weakly interacting massive particles (WIMPs), which are hypothesized to make up the dark matter in our galactic halo. In this paper, the projected WIMP sensitivity of LZ is presented based on the latest background estimates and simulations of the detector. For a 1000 live day run using a 5.6-tonne fiducial mass, LZ is projected to exclude at 90% confidence level spin-independent WIMP-nucleon cross sections above 1.4 × 10-48cm2 for a 40 GeV/c2 mass WIMP.
Additionally, a 5σ discovery potential is projected, reaching cross sections below the exclusion limits of recent experiments. For spin-dependent WIMP-neutron(-proton) scattering, a sensitivity of 2.3 × 10−43 cm2 (7.1 × 10−42 cm2) for a 40 GeV/c2
mass WIMP is expected. With underground installation well underway, LZ is on track for commissioning at SURF in 2020
Search for annual and diurnal rate modulations in the LUX experiment
Various dark matter models predict annual and diurnal modulations of dark matter interaction rates in Earth-based experiments as a result of the Earth’s motion in the halo. Observation of such features can provide generic evidence for detection of dark matter interactions. This paper reports a search for both annual and diurnal rate modulations in the LUX dark matter experiment using over 20 calendar months of data acquired between 2013 and 2016. This search focuses on electron recoil events at low energies, where leptophilic dark matter interactions are expected to occur and where the DAMA experiment has observed a strong rate modulation for over two decades. By using the innermost volume of the LUX detector and developing robust cuts and corrections, we obtained a stable event rate of 2.3±0.2  cpd/keVee/tonne, which is among the lowest in all dark matter experiments. No statistically significant annual modulation was observed in energy windows up to 26  keVee. Between 2 and 6  keVee, this analysis demonstrates the most sensitive annual modulation search up to date, with 9.2σ tension with the DAMA/LIBRA result. We also report no observation of diurnal modulations above 0.2  cpd/keVee/tonne amplitude between 2 and 6  keVee.Various dark matter models predict annual and diurnal modulations of dark matter interaction rates in Earth-based experiments as a result of the Earth's motion in the halo. Observation of such features can provide generic evidence for detection of dark matter interactions. This paper reports a search for both annual and diurnal rate modulations in the LUX dark matter experiment using over 20 calendar months of data acquired between 2013 and 2016. This search focuses on electron recoil events at low energies, where leptophilic dark matter interactions are expected to occur and where the DAMA experiment has observed a strong rate modulation for over two decades. By using the innermost volume of the LUX detector and developing robust cuts and corrections, we obtained a stable event rate of 2.30.2~cpd/keV/tonne, which is among the lowest in all dark matter experiments. No statistically significant annual modulation was observed in energy windows up to 26~keV. Between 2 and 6~keV, this analysis demonstrates the most sensitive annual modulation search up to date, with 9.2 tension with the DAMA/LIBRA result. We also report no observation of diurnal modulations above 0.2~cpd/keV/tonne amplitude between 2 and 6~keV
Measurement of the gamma ray background in the Davis Cavern at the Sanford Underground Research Facility
Deep underground environments are ideal for low background searches due to the attenuation of cosmic rays by passage through the earth. However, they are affected by backgrounds from γ-rays emitted by 40K and the 238U and 232Th decay chains in the surrounding rock. The LUX-ZEPLIN (LZ) experiment will search for dark matter particle interactions with a liquid xenon TPC located within the Davis campus at the Sanford Underground Research Facility, Lead, South Dakota, at the 4,850-foot level. In order to characterise the cavern background, in-situ γ-ray measurements were taken with a sodium iodide detector in various locations and with lead shielding. The integral count rates (0--3300~keV) varied from 596~Hz to 1355~Hz for unshielded measurements, corresponding to a total flux in the cavern of 1.9±0.4~γ cm−2s−1. The resulting activity in the walls of the cavern can be characterised as 220±60~Bq/kg of 40K, 29±15~Bq/kg of 238U, and 13±3~Bq/kg of 232Th
The design, implementation, and performance of the LZ calibration systems
LUX-ZEPLIN (LZ) is a tonne-scale experiment searching for direct dark matter interactions and other rare events. It is located at the Sanford Underground Research Facility (SURF) in Lead, South Dakota, USA. The core of the LZ detector is a dual-phase xenon time projection chamber (TPC), designed with the primary goal of detecting Weakly Interacting Massive Particles (WIMPs) via their induced low energy nuclear recoils. Surrounding the TPC, two veto detectors immersed in an ultra-pure water tank enable reducing background events to enhance the discovery potential. Intricate calibration systems are purposely designed to precisely understand the responses of these three detector volumes to various types of particle interactions and to demonstrate LZ's ability to discriminate between signals and backgrounds. In this paper, we present a comprehensive discussion of the key features, requirements, and performance of the LZ calibration systems, which play a crucial role in enabling LZ's WIMP-search and its broad science program. The thorough description of these calibration systems, with an emphasis on their novel aspects, is valuable for future calibration efforts in direct dark matter and other rare-event search experiments
New constraints on ultraheavy dark matter from the LZ experiment
Searches for dark matter with liquid xenon time projection chamber experiments have traditionally focused on the region of the parameter space that is characteristic of weakly interacting massive particles, ranging from a few GeV/c2 to a few TeV/c2. Models of dark matter with a mass much heavier than this are well motivated by early production mechanisms different from the standard thermal freeze-out, but they have generally been less explored experimentally. In this work, we present a reanalysis of the first science run of the LZ experiment, with an exposure of 0.9  tonne×yr, to search for ultraheavy particle dark matter. The signal topology consists of multiple energy deposits in the active region of the detector forming a straight line, from which the velocity of the incoming particle can be reconstructed on an event-by-event basis. Zero events with this topology were observed after applying the data selection calibrated on a simulated sample of signal-like events. New experimental constraints are derived, which rule out previously unexplored regions of the dark matter parameter space of spin-independent interactions beyond a mass of 1017  GeV/c2.
Published by the American Physical Society
2024
</jats:sec
- …