19 research outputs found

    ICON 2019: International Scientific Tendinopathy Symposium Consensus: Clinical Terminology

    Get PDF
    © Author(s) (or their employer(s)) 2019. No commercial re-use. See rights and permissions. Published by BMJ.Background Persistent tendon pain that impairs function has inconsistent medical terms that can influence choice of treatment.1 When a person is told they have tendinopathy by clinician A or tendinitis by clinician B, they might feel confused or be alarmed at receiving what they might perceive as two different diagnoses. This may lead to loss of confidence in their health professional and likely adds to uncertainty if they were to search for information about their condition. Clear and uniform terminology also assists inter-professional communication. Inconsistency in terminology for painful tendon disorders is a problem at numerous anatomical sites. Historically, the term ‘tendinitis’ was first used to describe tendon pain, thickening and impaired function (online supplementary figure S1). The term ‘tendinosis’ has also been used in a small number of publications, some of which were very influential.2 3 Subsequently, ‘tendinopathy’ emerged as the most common term for persistent tendon pain.4 5 To our knowledge, experts (clinicians and researchers) or patients have never engaged in a formal process to discuss the terminology we use. We believe that health professionals have not yet agreed on the appropriate terminology for painful tendon conditions.Peer reviewedFinal Accepted Versio

    ICON 2019—International Scientific Tendinopathy Symposium Consensus: There are nine core health-related domains for tendinopathy (CORE DOMAINS): Delphi study of healthcare professionals and patients

    Get PDF
    Background: The absence of any agreed-upon tendon health-related domains hampers advances in clinical tendinopathy research. This void means that researchers report a very wide range of outcome measures inconsistently. As a result, substantial synthesis/meta-analysis of tendon research findings is almost futile despite researchers publishing busily. We aimed to determine options for, and then define, core health-related domains for tendinopathy. Methods: We conducted a Delphi study of healthcare professionals (HCP) and patients in a three-stage process. In stage 1, we extracted candidate domains from clinical trial reports and developed an online survey. Survey items took the form: ‘The ‘candidate domain’ is important enough to be included as a core health-related domain of tendinopathy’; response options were: agree, disagree, or unsure. In stage 2, we administered the online survey and reported the findings. Stage 3 consisted of discussions of the findings of the survey at the ICON (International Scientific Tendinopathy Symposium Consensus) meeting. We set 70% participant agreement as the level required for a domain to be considered ‘core’; similarly, 70% agreement was required for a domain to be relegated to ‘not core’ (see Results next). Results: Twenty-eight HCP (92% of whom had >10 years of tendinopathy experience, 71% consulted >10 cases per month) and 32 patients completed the online survey. Fifteen HCP and two patients attended the consensus meeting. Of an original set of 24 candidate domains, the ICON group deemed nine domains to be core. These were: (1) patient rating of condition, (2) participation in life activities (day to day, work, sport), (3) pain on activity/loading, (4) function, (5) psychological factors, (6) physical function capacity, (7) disability, (8) quality of life and (9) pain over a specified time. Two of these (2, 6) were an amalgamation of five candidate domains. We agreed that seven other candidate domains were not core domains: range of motion, pain on clinician applied test, clinical examination, palpation, drop out, sensory modality pain and pain without other specification. We were undecided on the other five candidate domains of physical activity, structure, medication use, adverse effects and economic impact. Conclusion: Nine core domains for tendon research should guide reporting of outcomes in clinical trials. Further research should determine the best outcome measures for each specific tendinopathy (ie, core outcome sets)

    Movement Patterns and Muscular Function Before and After Onset of Sports-Related Groin Pain: A Systematic Review with Meta-analysis

    Get PDF
    BACKGROUND: Sports-related groin pain (SRGP) is a common entity in rotational sports such as football, rugby and hockey, accounting for 12-18 % of injuries each year, with high recurrence rates and often prolonged time away from sport. OBJECTIVE: This systematic review synthesises movement and muscle function findings to better understand deficits and guide rehabilitation. STUDY SELECTION: Prospective and retrospective cross-sectional studies investigating muscle strength, flexibility, cross-sectional area, electromyographic activation onset and magnitude in patients with SRGP were included. SEARCH METHODS: Four databases (MEDLINE, Web of Knowledge, EBSCOhost and EMBASE) were searched in June 2014. Studies were critiqued using a modified version of the Downs and Black Quality Index, and a meta-analysis was performed. RESULTS: Seventeen studies (14 high quality, 3 low quality; 8 prospective and 9 retrospective) were identified. Prospective findings: moderate evidence indicated decreased hip abduction flexibility as a risk factor for SRGP. Limited or very limited evidence suggested that decreased hip adduction strength during isokinetic testing at ~119°/s was a risk factor for SRGP, but no associations were found at ~30°/s or ~210°/s, or with peak torque angle. Decreased hip abductor strength in angular velocity in ~30°/s but not in ~119°/s and ~210°/s was found as a risk factor for SRGP. No relationships were found with hip internal or external rotation range of movement, nor isokinetic knee extension strength. Decreased isokinetic knee flexion strength also was a potential risk factor for SRGP, at a speed ~60°/s. Retrospective findings: there was strong evidence of decreased hip adductor muscle strength during a squeeze test at 45°, and decreased total hip external rotation range of movement (sum of both legs) being associated with SRGP. There was strong evidence of no relationship to abductor muscle strength nor unilateral hip internal and external rotation range of movement. Moderate evidence suggested that increased abduction flexibility and no change in total hip internal rotation range of movement (sum of both legs) were retrospectively associated with SRGP. Limited or very limited evidence (significant findings only) indicated decreased hip adductor muscle strength during 0° and 30° squeeze tests and during an eccentric hip adduction test, but a decrease in the isometric adductors-to-abductors strength ratio at speed 120°/s; decreased abductors-to-adductors activation ratio in the early phase in the moving leg as well as in all three phases in the weight-bearing leg during standing hip flexion; and increased hip flexors strength during isokinetic and decrease in transversus abdominis muscle resting thickness associated with SRGP. CONCLUSIONS: There were a number of significant movement and muscle function associations observed in athletes both prior to and following the onset of SRGP. The strength of findings was hampered by the lack of consistent terminology and diagnostic criteria, with there being clear guides for future research. Nonetheless, these findings should be considered in rehabilitation and prevention planning

    Efficacy of different load intensity and time-under-tension calf loading protocols for Achilles tendinopathy (the LOADIT trial): protocol for a randomised pilot study

    No full text
    Background: Modifying variables in exercise prescription can produce specific effects on Achilles tendinopathy outcomes. This study aims to determine the feasibility of conducting an adequately powered randomised trial in the future to assess the efficacy of different load intensity and time-under-tension exercise parameters for improving pain and function in individuals with persistent midportion Achilles tendinopathy. Methods: The trial is designed as prospective, four-armed feasibility and randomised pilot trial with 3 months follow-up. Interventions will be provided in a gym setting. The investigator, who will be blind to the allocation of participants, will conduct all pre- and post-intervention assessments. Forty-eight male participants with Achilles tendinopathy will be recruited from the community. We will use a 2 × 2 factorial design with factors of load intensity (six or eighteen repetitions maximum) and time-under-tension (two or six second repetitions). Participants will be randomised into one of the testing groups: six RM with two second repetitions, six RM with six second repetitions, eighteen RM with two second repetitions or eighteen RM with six second repetitions. Trial feasibility will be indicated by the rate of conversion, recruitment and retention, adherence to the interventions by participants, the utility of videoconferencing mode for weekly exercise supervision, incidence of adverse events, and feasibility of future economic evaluation. The secondary clinical outcomes will assess pain and disability, participant impression of change, satisfaction, health-related quality of life, physical activity, work absenteeism, psychological measures at baseline, 6 and 12 weeks, and plantarflexor contractile dysfunction (torque, rate of force development and muscle force steadiness) at baseline and 12 weeks. These clinical outcomes are primarily measured to provide information regarding potential treatment effects and trends. Discussion: The proposed study and follow-up powered randomised trial will be a first step towards determining exercise dose parameters that may optimise outcomes for Achilles tendinopathy. We have chosen to focus on load intensity and time-under-tension, as these parameters are important for tendon adaptation. This work has the potential to lead to more effective exercise loading interventions for Achilles tendinopathy

    Tendinopathic supraspinatus tenocytes may have a neuroendocrine-like function, secreting CGRP, SP and VEGF : a pilot immunohistochemistry study

    No full text
    We wanted to observe and compare the appearance of neurovascular tissue from tendon ex vivo, in patients with and without painful rotator cuff tendinopathy. Supraspinatus tendons were biopsied from 5 participants with painful tendinopathy and normal tendon from a young male. Slides were stained with haematoxylin & eosin and toluidine blue for histological assessment. Immunohistochemical markers for general nerves (protein gene-product 9.5 and synaptophysin), sensory nerves (calcitonin gene-related peptide; substance-P) and vascularisation (vascular endothelial growth factor) were used. PGP9.5 and CGRP-immunoreactive fibres were associated with vessels in cases and control. Synaptophysinlabelled fibres were observed in close relation to vessels in tendinopathy. PGP9.5, CGRP, SP and VEGF-immunoreaction also labelled tenocyte-like cells in degenerative areas and fibres in regions of fat and collagen. Sensory innervation and vascularity are increased in tendinopathy. The evidence for innervation and vascularity of symptomatic rotator cuff tendon may aid the development of novel investigations and therapies in the management of patients with this ailment

    Efficacy of high-volume injections with and without corticosteroid compared with sham for Achilles tendinopathy : a protocol for a randomised controlled trial

    Get PDF
    Introduction: Achilles tendinopathy (AT) is a common and disabling musculoskeletal condition. First-line management involving Achilles tendon loading exercise with, or without, other modalities may not resolve the problem in up to 44% of cases. Many people receive injections. Yet there are no injection treatments with demonstrated long-term efficacy. The aim of the trial is to examine the 12-month efficacy of high-volume injection (HVI) with corticosteroid and HVI without corticosteroid versus sham injection among individuals with AT. Methods and analysis: The trial is a three-arm, parallel group, double-blind, superiority randomised controlled trial that will assess the efficacy of HVI with and without corticosteroid versus sham up to 12 months. We will block-randomise 192 participants to one of the three groups with a 1:1:1 ratio, and both participants and outcome assessors will be blinded to treatment allocation. All participants will receive an identical evidence-based education and exercise intervention. The primary outcome measure will be the Victorian Institute of Sport Assessment – Achilles (VISA-A) at 12 months post-randomisation, a validated, reliable and disease-specific measure of pain and function. Choice of secondary outcomes was informed by core outcome domains for tendinopathy. Data will be analysed using the intention-to-treat principle. Ethics and dissemination: Ethics approval was obtained via the Monash University Human Ethics Committee (no: 13138). The study is expected to be completed in 2024 and disseminated via peer review publication and conference presentations. Trial registration number: Australia and New Zealand Clinical trials registry (ACTRN12619001455156
    corecore