1,661 research outputs found

    Generating Entangled Microwave Radiation Over Two Transmission Lines

    Full text link
    Using a superconducting circuit, the Josephson mixer, we demonstrate the first experimental realization of spatially separated two-mode squeezed states of microwave light. Driven by a pump tone, a first Josephson mixer generates, out of quantum vacuum, a pair of entangled fields at different frequencies on separate transmission lines. A second mixer, driven by a π\pi-phase shifted copy of the first pump tone, recombines and disentangles the two fields. The resulting output noise level is measured to be lower than for vacuum state at the input of the second mixer, an unambiguous proof of entanglement. Moreover, the output noise level provides a direct, quantitative measure of entanglement, leading here to the demonstration of 6 Mebit.s1^{-1} (Mega entangled bits per second) generated by the first mixer.Comment: 5 pages, 4 figures. Supplementary Information can be found here as an ancillary fil

    Characterization of nanometer-sized, mechanically exfoliated graphene on the H-passivated Si(100) surface using scanning tunnelling microscopy

    Full text link
    We have developed a method for depositing graphene monolayers and bilayers with minimum lateral dimensions of 2-10 nm by the mechanical exfoliation of graphite onto the Si(100)-2x1:H surface. Room temperature, ultra-high vacuum (UHV) tunnelling spectroscopy measurements of nanometer-sized single-layer graphene reveal a size dependent energy gap ranging from 0.1-1 eV. Furthermore, the number of graphene layers can be directly determined from scanning tunnelling microscopy (STM) topographic contours. This atomistic study provides an experimental basis for probing the electronic structure of nanometer-sized graphene which can assist the development of graphene-based nanoelectronics.Comment: Accepted for publication in Nanotechnolog

    Deep Learning Causal Attributions of Breast Cancer

    Get PDF
    In this paper, a deep learning-based approach is applied to high dimensional, high-volume, and high-sparsity medical data to identify critical casual attributions that might affect the survival of a breast cancer patient. The Surveillance Epidemiology and End Results (SEER) breast cancer data is explored in this study. The SEER data set contains accumulated patient-level and treatment-level information, such as cancer site, cancer stage, treatment received, and cause of death. Restricted Boltzmann machines (RBMs) are proposed for dimensionality reduction in the analysis. RBM is a popular paradigm of deep learning networks and can be used to extract features from a given data set and transform data in a non-linear manner into a lower dimensional space for further modelling. In this study, a group of RBMs has been trained to sequentially transform the original data into a very low dimensional space, and then the k-means clustering is conducted in this space. Furthermore, the results obtained about the cluster membership of the data samples are mapped back to the original sample space for interpretation and insight creation. The analysis has demonstrated that essential features relating to breast cancer survival can be effectively extracted and brought forward into a much lower dimensional space formed by RBMs

    The perfect mixing paradox and the logistic equation: Verhulst vs. Lotka

    Get PDF
    A theoretical analysis of density-dependent population dynamics in two patches sheds novel light on our understanding of basic ecological parameters. Firstly, as already highlighted in the literature, the use of the traditional r-K parameterization for the logistic equation (due to Lotka and Gause) can lead to paradoxical situations. We show that these problems do not exist with Verhulst's original formulation, which includes a quadratic “friction” term representing intraspecific competition (parameter α) instead of the so-called carrying capacity K. Secondly, we show that the parameter α depends on the number of patches, or more generally on area. This is also the case of all parameters that quantify the interaction strengths between individuals, either of the same species or of different species. The consequence is that estimates of interaction strength will vary when population size is measured in absolute terms. In order to obtain scale-invariant parameter estimates, it is essential to express population abundances as densities. Also, the interaction parameters must be reported with all explicit units, such as (m2·individual−1·d−1), which is rarely the case

    RNA-seq transcriptome analysis reveals long terminal repeat retrotransposon modulation in human peripheral blood mononuclear cells after in vivo lipopolysaccharide injection

    Get PDF
    Human endogenous retroviruses (HERVs) and mammalian apparent long terminal repeat (LTR) retrotransposons (MaLRs) are retroviral sequences that integrated into germ line cells millions of years ago. Transcripts of these LTR retrotransposons are present in several tissues, and their expression is modulated in pathological conditions, although their function remains often far from being understood. Here, we focused on the HERV/MaLR expression and modulation in a scenario of immune system activation. We used a public data set of human peripheral blood mononuclear cells (PBMCs) RNA-Seq from 15 healthy participants to a clinical trial before and after exposure to lipopolysaccharide (LPS), for which we established an RNA-Seq workflow for the identification of expressed and modulated cellular genes and LTR retrotransposon elements. IMPORTANCE We described the HERV and MaLR transcriptome in PBMCs, finding that about 8.4% of the LTR retrotransposon loci were expressed and identifying the betaretrovirus-like HERVs as those with the highest percentage of expressed loci. We found 4,607 HERV and MaLR loci that were modulated as a result of in vivo stimulation with LPS. The HERV-H group showed the highest number of differentially expressed most intact proviruses. We characterized the HERV and MaLR loci as differentially expressed, checking their genomic context of insertion and observing a general colocalization with genes that are involved and modulated in the immune response, as a consequence of LPS stimulation. The analyses of HERV and MaLR expression and modulation show that these LTR retrotransposons are expressed in PBMCs and regulated in inflammatory settings. The similar regulation of HERVs/MaLRs and genes after LPS stimulation suggests possible interactions of LTR retrotransposons and the immune host response

    Scaling of the low temperature dephasing rate in Kondo systems

    Get PDF
    We present phase coherence time measurements in quasi-one-dimensional Ag wires doped with Fe Kondo impurities of different concentrations nsn_s. Due to the relatively high Kondo temperature TK4.3KT_{K}\approx 4.3K of this system, we are able to explore a temperature range from above TKT_{K} down to below 0.01TK0.01 T_{K}. We show that the magnetic contribution to the dephasing rate γm\gamma_m per impurity is described by a single, universal curve when plotted as a function of (T/TK)(T/T_K). For T>0.1TKT>0.1 T_K, the dephasing rate is remarkably well described by recent numerical results for spin S=1/2S=1/2 impurities. At lower temperature, we observe deviations from this theory. Based on a comparison with theoretical calculations for S>1/2S>1/2, we discuss possible explanations for the observed deviations.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let

    Müllerian mimicry of a quantitative trait despite contrasting levels of genomic divergence and selection

    Get PDF
    Hybrid zones, where distinct populations meet and interbreed, give insight into how differences between populations are maintained despite gene flow. Studying clines in genetic loci and adaptive traits across hybrid zones is a powerful method for understanding how selection drives differentiation within a single species, but can also be used to compare parallel divergence in different species responding to a common selective pressure. Here, we study parallel divergence of wing colouration in the butterflies Heliconius erato and H. melpomene , which are distantly related Müllerian mimics which show parallel geographic variation in both discrete variation in pigmentation, and quantitative variation in structural colour. Using geographic cline analysis, we show that clines in these traits are positioned in roughly the same geographic region for both species, which is consistent with direct selection for mimicry. However, the width of the clines varies markedly between species. This difference is explained in part by variation in the strength of selection acting on colour traits within each species, but may also be influenced by differences in the dispersal rate and total strength of selection against hybrids between the species. Genotyping‐by‐sequencing also revealed weaker population structure in H. melpomene , suggesting the hybrid zones may have evolved differently in each species, which may also contribute to the patterns of phenotypic divergence in this system. Overall, we conclude that multiple factors are needed to explain patterns of clinal variation within and between these species, although mimicry has probably played a central role

    Patterned silicon substrates: a common platform for room temperature GaN and ZnO polariton lasers

    Full text link
    A new platform for fabricating polariton lasers operating at room temperature is introduced: nitride-based distributed Bragg reflectors epitaxially grown on patterned silicon substrates. The patterning allows for an enhanced strain relaxation thereby enabling to stack a large number of crack-free AlN/AlGaN pairs and achieve cavity quality factors of several thousands with a large spatial homogeneity. GaN and ZnO active regions are epitaxially grown thereon and the cavities are completed with top dielectric Bragg reflectors. The two structures display strong-coupling and polariton lasing at room temperature and constitute an intermediate step in the way towards integrated polariton devices

    Extended triphenylamine conjugated systems derivatized by perfluorophenyl groups

    Get PDF
    Two triphenylamine derivatives bearing terminal perfluorophenyl groups have been synthesized. Their HOMO. LUMO levels and electronic band gap have been evaluated by spectroscopic and electrochemical measurements and rationalized with theoretical calculations. X-ray structure analysis of crystals allowed the observation of multiple intermolecular interactions due to the presence of the perfluorophenyl pendant groups. The multiplication of these interactions explains the differences between calculated (in gas phase) and observed (in solid states) structures. (C) 2011 Elsevier Ltd. All rights reserved
    corecore