19 research outputs found

    Cancer Prevention as the Key to Long Term Population Health: An Interview with Dr. Carolyn Gotay

    Get PDF
    Dr. Carolyn Gotay is Professor and Canadian Cancer Society Chair in Cancer Primary Prevention at the University of British Columbia (UBC). Her training began at Duke University and continued with a PhD in Psychology from the University of Maryland. During her first position at the University of Calgary, she became interested in the relationship between psychology and cancer, which would become the focus of her subsequent work. Dr. Gotay has held positions at Gettysburg College, the University of Calgary, and the National Cancer Institute (U.S.) where she acted as a Health Scientist Administrator. Following these positions, she began at the University of Hawaii, where she worked as the Director of the Cancer Prevention and Control Program. Throughout these various roles, her primary prevention interests were multi-faceted; they included a focus on clinical trials investigating quality of life as well as understanding end-of-life care and the psychosocial wellbeing of patients. Dr. Gotay joined UBC in 2008 where she continued her primary prevention research through the School of Population and Public Health and the B.C. Cancer Agency. Currently, Dr. Gotay is a leader in the Cancer Prevention Centre where she and her colleagues look at modifiable cancer risk factors and the application and assessment of interven­tions to modify these behaviours in the population. Dre Carolyn Gotay est professeure et elle siège au sein de la Société canadienne du cancer dans le domaine de la prévention primaire du cancer à l’Université de la Colombie-Britannique. Son éducation universitaire a débuté à l’Université de Duke et elle a continué ses études doctorales en psychologie à l’Université de Maryland. Son premier poste fut à l’Université de Calgary et elle concentre ses recherches sur la relation entre la psychologie et le cancer. Dre Gotay a obtenu des postes à l’Université de Gettysburg, à l’Université de Calgary et à l’institut national du cancer (É.U.) où elle était administratrice scientifique de la santé. Par la suite, elle a travaillé à l’Université d’Hawaii, où elle a oeuvré en tant que directrice du programme de prévention et de contrôle du cancer. À travers son cheminement professionnel, Dre Gotay a étudié les soins primaires préventifs en lien avec la qualité de vie, les soins de fin de vie et le bien-être psychosocial des patients. En 2008, elle a eu la chance de continuer sa recherche en soins préventifs primaires à l’Université de la Colombie-Britannique dans le département de santé publique ainsi qu’à l’agence de cancer de la Colombie-Britannique. Dre Go­tay demeure une leader au centre de prévention du cancer où elle travaille présentement avec ses collègues pour trouver des facteurs de risque modifiables du cancer et l’application d’interventions pour modifier ces comportements dans la population

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BACKGROUND: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. METHODS: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. FINDINGS: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. INTERPRETATION: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic. FUNDING: Bill & Melinda Gates Foundation

    An Unusual Case of Deep Brain Stimulation Wound Infection Secondary to COVID-19 Mask-Related Friction

    No full text
    This article is licensed under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC). Usage and distribution for commercial purposes requires written permission. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements

    GNAO1 Mutation–Induced Pediatric Dystonic Storm Rescue With Pallidal Deep Brain Stimulation

    No full text
    Dystonic storm or status dystonicus is a life-threatening hyperkinetic movement disorder with biochemical alterations due to the excessive muscle contractions. The medical management can require pediatric intensive care unit admission and a combination of medications while the underlying trigger is managed. Severe cases may require general anesthesia and paralytic agents with intubation and may relapse when these drugs are weaned. Deep brain stimulation of the globus pallidum has been reported to terminate dystonic storm in several pediatric cases. We present a 10-year-old boy with a de novo GNAO1 mutation–induced dystonic storm who required a 2-month pediatric intensive care unit admission and remained refractory to all medical treatments. Deep brain stimulation was performed under general anesthetic without complication. His dyskinetic movements stopped with initiation of stimulation. He was discharged from the pediatric intensive care unit after 4 days. We present prospectively evaluated changes in dystonia symptoms and quality of life for a patient with GNAO1 mutation treated with deep brain stimulation

    Nanoscale Reaction Vessels Designed for Synthesis of Copper-Drug Complexes Suitable for Preclinical Development

    No full text
    The development of copper-drug complexes (CDCs) is hindered due to their very poor aqueous solubility. Diethyldithiocarbamate (DDC) is the primary metabolite of disulfiram, an approved drug for alcoholism that is being repurposed for cancer. The anticancer activity of DDC is dependent on complexation with copper to form copper bis-diethyldithiocarbamate (Cu(DDC)(2)), a highly insoluble complex that has not been possible to develop for indications requiring parenteral administration. We have resolved this issue by synthesizing Cu(DDC)(2) inside liposomes. DDC crosses the liposomal lipid bilayer, reacting with the entrapped copper; a reaction that can be observed through a colour change as the solution goes from a light blue to dark brown. This method is successfully applied to other CDCs including the anti-parasitic drug clioquinol, the natural product quercetin and the novel targeted agent CX-5461. Our method provides a simple, transformative solution enabling, for the first time, the development of CDCs as viable candidate anticancer drugs; drugs that would represent a brand new class of therapeutics for cancer patients

    Pre-Injury Antiplatelet Therapy and Risk of Adverse Outcomes after Traumatic Brain Injury: A Systematic Review and Meta-Analysis.

    No full text
    There is an increasing number of trauma patients presenting on pre-injury antiplatelet (AP) agents attributable to an aging population and expanding cardio- or cerebrovascular indications for antithrombotic therapy. The effects of different AP regimens on outcomes after traumatic brain injury (TBI) have yet to be elucidated, despite the implications on patient/family counseling and the potential need for better reversal strategies. The goal of this systematic review and meta-analysis was to assess the impact of different pre-injury AP regimens on outcomes after TBI. In accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, the OVID Medline, Embase, BIOSIS, Scopus, and Cochrane databases were searched from inception to February 2022 using a combination of terms pertaining to TBI and use of AP agents. Baseline demographics and study characteristics as well as outcome data pertaining to intracerebral hematoma (ICH) progression, need for neurosurgical intervention, hospital length of stay, mortality, and functional outcome were extracted. Pooled odds ratios (ORs) and mean differences comparing groups were calculated using random-effects models. Thirteen observational studies, totaling 1244 patients receiving single AP therapy with acetylsalicylic acid or clopidogrel, 413 patients on dual AP therapy, and 3027 non-AP users were included. No randomized controlled trials were identified. There were significant associations between dual AP use and ICH progression (OR, 2.81; 95% confidence interval [CI], 1.19-6.61; I 2, 85%; p = 0.02) and need for neurosurgical intervention post-TBI (OR, 1.61; 95% CI, 1.15-2.28; I 2, 15%; p = 0.006) compared to non-users, but not between single AP therapy and non-users. There were no associations between AP use and hospital length of stay or mortality after trauma. Pre-injury dual AP use, but not single AP use, is associated with higher rates of ICH progression and neurosurgical intervention post-TBI. However, the overall quality of studies was low, and this association should be further investigated in larger studies

    A simple passive equilibration method for loading carboplatin into pre-formed liposomes incubated with ethanol as a temperature dependent permeability enhancer.

    No full text
    A passive equilibration method which relies on addition of candidate drugs to pre-formed liposomes is described as an alternative method for preparing liposome encapsulated drugs. The method is simple, rapid and applicable to liposomes prepared with high (45mol%) or low (<20mol%) levels of cholesterol. Passive equilibration is performed in 4-steps: (i) formation of liposomes, (ii) addition of the candidate drug to the liposomes in combination with a permeability enhancing agent, (iii) incubation at a temperature that facilitates diffusion of the added compound across the lipid bilayer, and (iv) quenching the enhanced membrane permeability by reduction in temperature and/or removal of the permeabilization enhancer. The method is fully exemplified here using ethanol as the permeabilization enhancer and carboplatin (CBDCA) as the drug candidate. It is demonstrated that ethanol can be added to liposomes prepared with 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and Cholesterol (Chol) (55:45mol ratio) in amounts up to 30% (v/v) with no change in liposome size, even when incubated at temperatures>60°C. Super-saturated solutions of CBDCA (40mg/mL) can be prepared at 70°C and these are stable in the presence of ethanol even when the temperature is reduced to <30°C. maximum CBDCA encapsulation is achieved within 1h after the CBDCA solution is added to pre-formed DSPC/Chol liposomes in the presence of 30% (v/v) ethanol at 60°C. When the pre-formed liposomes are mixed with ethanol (30% v/v) at or below 40°C, the encapsulation efficiency is reduced by an order of magnitude. The method was also applied to liposomes prepared from other compositions include a cholesterol free formulations (containing 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[carboxy(polyethylene glycol)-2000] (DSPE-PEG2000)) and a low Chol (<20mol%) formulations prepared with the distearoyl-sn-glycero-3-phospho-(1'-rac-glycerol) DSPG)). The cytotoxic activity of CBDCA was unaffected when prepared in this manner and two of the resultant formulations exhibited good stability in vitro and in vivo. The cytotoxic activity of CBDCA was unaffected when prepared in this manner and the resultant formulations exhibited good stability in vitro and in vivo. Pharmacokinetics studies in CD-1 mice indicated that the resulting formulations increased the circulation half life of the associated CBDCA significantly (AUC0-24h of CBDCA=0.016μg·hr/mL; AUC0-24h of the DSPC/Chol CBDCA formulation=1014.0μg·hr/mL and AUC0-24h of the DSPC/DSPG/Chol CBDCA formulation=583.96μg·hr/mL). Preliminary efficacy studies in Rag-2M mice with established subcutaneous H1975 and U-251 tumors suggest that the therapeutic activity of CBDCA is improved when administered in liposomal formulations. The encapsulation method described here has not been disclosed previously and will have broad applications to drugs that would normally be encapsulated during liposome manufacturing

    Diethyldithiocarbamate (DDC) loading into DSPC/Chol (55:45) liposomes prepared with encapsulated 300 mM CuSO<sub>4</sub>.

    No full text
    <p><b>(A)</b> Photograph of solutions consisting of DDC (5mg/mL) and added to CuSO<sub>4</sub>-containing DSPC/Chol (55:45) liposomes (20 mM liposomal lipid) over a 1 hour at 25°C. <b>(B)</b> Formation of Cu(DDC)<sub>2</sub> inside DSPC/Chol liposomes (20 mM) as a function of time over 1 hour at 4(●), 25(■) and 40(▲)°C following addition of DDC at a final DDC concentration of (5 mM); Cu(DDC)<sub>2</sub> was measured using a UV-Vis spectrophotometer and lipid was measured using scintillation counting. <b>(C)</b> Cu(DDC)<sub>2</sub> formation inside DSPC/Chol (55:45) liposomes over time where the external pH was 7.4 (▲) and 3.5 (▼). <b>(D)</b> Measured Cu(DDC)<sub>2</sub> as a function of increasing DDC added, represented as the theoretical Cu(DDC)<sub>2</sub> to total liposomal lipid ratio; where the lipid concentration was fixed at 20 mM and final DDC concentration was varied. <b>(E)</b> Cryo-electron microscopy photomicrograph of CuSO<sub>4</sub>- containing DSPC/Chol (55:45) liposomes and the same liposomes after formation of encapsulated Cu(DDC)<sub>2</sub>. <b>(F)</b> Size of the CuSO<sub>4</sub>- containing liposomes and liposomes with encapsulated Cu(DDC)<sub>2</sub> as determined by quasi-electric light scattering and cryo-electron microscopy; data points are given as mean ± SD.</p
    corecore