4 research outputs found

    Results of Polish Adult Leukemia Study Group (PALG) project assessing TP53 mutations with next-generation sequencing technology in relapsed and refractory chronic lymphocytic leukemia patients — an 18-month update

    Get PDF
    Indtroduction and methods: In chronic lymphocytic leukemia (CLL), molecular and cytogenetic diagnostics are crucial for the determination of accurate prognosis and treatment choice. Among different genetic aberrations, del(17p13) or TP53 mutations constitute high-risk factors, and early identification of such defects is a high priority for CLL patients. While cytogenetic diagnostics is well-established and accessible for the majority of CLL patients in Poland, molecular diagnostics of TP53 mutations is performed only in a few ERIC-certified centers (eight as of September 2020), and only two of these employ next-generation sequencing (NGS) for routine analysis of TP53 status in CLL patients. Here we report the interim results of a project assessing TP53 mutations with NGS technology in relapsed or refractory CLL patients with confirmed negative del(17p13) status. 249 patients from 32 clinical centers were included in the study. Results: NGS analysis revealed TP53 mutations in 42/249 (17%) patients, half of whom (21/249, 8.5%) had subclonal mutations (VAF ≤10%). These results are in line with published data in relapsed/refractory CLL patients. Conclusions: The results of the project demonstrated the feasibility and accuracy of NGS testing in CLL patients despite several initial logistical and technical obstacles. Our study also proved that, with appropriate funding, CLL patients from any hematological center in Poland can have access to state-of-the-art molecular diagnostic

    Evolution of bet-hedging mechanisms in cell cycle and embryo development stimulated by weak linkage of stochasticity.

    No full text
    Our current understanding of the origin and evolution of the cell cycle is largely filled with gaps and unresolved questions. Numerous similarities between the processes comprising the cell cycle in distant organisms from the Pro- and Eukaryota kingdoms provide some clues about the course that evolution has taken. Contemporary Prokaryotes and Eukaryotes regulate their cell cycles in a quite similar way, using a master oscillator that regulates cell division. Despite this striking similarity, they use entirely different molecules for this purpose. The necessity to keep the master oscillator intact for the survival of every cell/organism allows evolutionary changes in only the secondary mechanisms and processes of the cell cycle. This is especially clear in oocytes and embryos, which have a direct impact on the reproductive success of an adult organism. Here, we present examples of cues driving such mild evolutionary changes of certain aspects of cell cycle progression in oocytes and early embryos. We suggest that weak linkages between core processes that rely on randomness (stochasticity) have led to the evolution of strategies increasing fitness similar to bet-hedging, a stochastic-based survival strategy of risk minimization widely implemented by populations of bacteria, yeast, arthropods, and birds. Stochastic diversification of phenotypes by isogenic cells increases their fitness in unpredictable environments and improves their survival rate upon exposure to stress, a trait beneficial in evading antibiotic treatment by bacteria or withstanding chemotherapy by cancer cells. The evolution of bet-hedging has been observed experimentally for bacteria and attributed to specific molecular mechanisms involved in this strategy. In this chapter, we set out to answer whether similar strategies could have evolved at the level of oocytes and embryos. We indicate possible evolutionary cues capable of realizing bet-hedging-like mechanisms

    The Association between Immune Checkpoint Proteins and Therapy Outcomes in Acute Myeloid Leukaemia Patients

    No full text
    The development of novel drugs with different mechanisms of action has dramatically changed the treatment landscape of AML patients in recent years. Considering a significant dysregulation of the immune system, inhibitors of immune checkpoint (ICI) proteins provide a substantial therapeutic option for those subjects. However, use of ICI in haematological malignancies remains very limited, in contrast to their wide use in solid tumours. Here, we analysed expression patterns of the most promising selected checkpoint-based therapeutic targets in AML patients. Peripheral blood of 72 untreated AML patients was used for flow cytometric analysis. Expression of PD-1, PD-L1, CTLA-4, and B7-H3 was assessed within CD4+ (Th) lymphocytes and CD33+ blast cells. Patients were stratified based on therapy outcome and cytogenetic molecular risk. AML non-responders (NR) showed a higher frequency of PD-1 in Th cells compared to those with complete remission (CR). Reduced blast cell level of CTLA-4 was another factor differentiating CR from NR subjects. Elevated levels of PD-1 were associated with a trend for poorer patients’ survival. Additionally, prognosis for AML patients was worse in case of a higher frequency of B7-H3 in Th lymphocytes. In summary, we showed the significance of selected ICI as outcome predictors in AML management. Further, multicentre studies are required for validation of those data
    corecore