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Introduction

Chronic lymphocytic leukemia (CLL) is the most commonly 
diagnosed leukemia in adults in the Western world, with 
a median age at diagnosis of 72 years. Incidence rates 
are similar in Europe and North America, ranging from 4 to  
6 per 100,000 persons per year. In 2014, there were more 
than 12,000 new cases detected in the European Union 
(EU) (including approximately 2,000 cases in Poland) and 
more than 15,000 cases in Unites States (US) with more 
than 70% of patients being older than 65 at diagnosis. The 
disease is characterized by a very heterogeneous clinical 
course ranging from indolent cases which never require 
treatment, to rapidly progressing patients in whom therapy 
needs to be urgently initiated at diagnosis [1]. So far, nu-
merous clinical and molecular prognosticators have been 
identified in CLL. However, molecular aberrations affecting 
the TP53 gene leading to dysfunction of p53 protein remain 
the most recognized factor associated with poor disease 
outcome [1, 2].

Common mechanisms of TP53 defects in CLL in-
clude the deletion of the short arm of chromosome 17, 
del(17p13), that encompasses the TP53 locus, as well 
as loss-of-function mutations. Del(17p13) is routinely 
tested by interphase fluorescence in situ hybridization 
(FISH) in CLL patients at treatment initiation, along with 
a panel of other recurrent cytogenetic abnormalities 
such as del(13q14), del(11q) and tris(12). Of these aber-
rations, del(17p13) is associated with the shortest me-
dian overall survival (OS), only 32 months when classical 
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chemotherapeutics are used as a treatment modality 
[3]. Del(17p13) is diagnosed in approximately 5–10% of 
treatment-naïve CLL cases, however its incidence incre-
ases in relapsed or refractory CLL (RR-CLL) patients [3]. 
The introduction of anti-CD20 antibodies-based immuno-
chemotherapy did not improve the prognosis of patients 
with p53 defects. Combination therapy with rituximab and 
purine nucleoside analogs rarely resulted in the achieve-
ment of complete remission (CR), while median progres-
sion-free survival (PFS) reached only 11–14 months [4]. 
Similarly, a rituximab and bendamustine regimen resulted 
in even poorer outcomes, with a median PFS of 8.7 months 
[5]. On the other hand, the prognosis of CLL patients with 
TP53 abnormalities has dramatically improved with the 
development of novel agents inhibiting B-cell receptor 
(BCR) signaling e.g. Bruton’s tyrosine kinase (BTK) inhi-
bitor ibrutinib and the phosphoinositide 3-kinase (PI3K) 
delta inhibitor idelalisib [2, 6–9]. In addition, venetoclax, 
a B-cell lymphoma 2 (BCL2) antagonist, has also shown 
a remarkable activity in heavily pretreated RR-CLL inclu-
ding patients with p53 pathway defects [10].

In up to 90% of cases with del(17p13), a mutation in the 
second TP53 allele is also present [11, 12]. This mechanism 
leads to biallelic loss of the functional TP53 gene and thus 
to complete inactivation of p53 tumor suppressor pathway 
[11, 12]. Sole TP53 mutations without del(17p13) compri-
se approximately 30% of all CLL cases with p53 pathway 
defect, whereas sole del(17p13) without TP53 mutations 
are diagnosed only in 5% of such cases [11, 13, 14]. Like-
wise, sole del(17p13) or TP53 mutations are associated 
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with CLL refractoriness or short responses to classical cy-
totoxic agents and anti-CD20-based immunochemothera-
py, and poor outcomes [11, 15, 16].

Direct Sanger sequencing is the most commonly used 
method for TP53 mutations assessment in CLL. In the ma-
jority of cases, Sanger sequencing is capable of detecting 
TP53 mutation only if the mutant allele is present at a mi-
nimum level of 10–15%, and such mutations are denoted 
as clonal. Importantly, smaller amounts of TP53-mutated 
alleles (subclonal TP53 mutations) may thus remain not 
detected. Nevertheless, according to international guideli-
nes, Sanger-based mutational TP53 analysis has been the 
recommended method in routine CLL diagnostics prece-
ding treatment qualification along with FISH for detection 
of del(17p13) [1, 17, 18].

Recent years have brought immense progress in the 
diagnostics of CLL [1, 2]. Firstly, the introduction of next-
-generation sequencing (NGS) allowed for the identifica-
tion of novel genes associated with CLL pathogenesis and 
prognosis. Secondly, NGS helped to recognize clonal evo-
lution and emergence of drug-resistant clones evolving 
during treatment [19–22]. Most importantly, the applica-
tion of NGS allows for the identification of small subclones 
of CLL cells with TP53 mutations, which would be missed 
using Sanger sequencing [23]. This seems clinically im-
portant as patients harboring small TP53 mutated subc-
lones were characterized by poorer survival than patients 
carrying clonal TP53 lesions [23]. In addition, TP53 mu-
tated subclones identified before treatment may become 
the predominant population at the time of CLL relapse 
and anticipate the development of chemorefractoriness 
[23]. Although NGS detects significantly more TP53 mu-
tations compared to Sanger sequencing, the method has 
not yet been introduced in routine clinical work-up of CLL 
patients due to a lack of standardization and the deba-
table significance of subclonal TP53 mutations in clini-
cal trials [1, 18].

While detection of del(17p13) by FISH is a part of the 
standard pretreatment work-up in CLL in most Polish he-
matology centers, diagnostics of TP53 mutations is much 
less commonly performed. Furthermore, access to NGS for 
the identification of prognostic mutations in routine practi-
ce is limited in Poland.

Therefore, to address these issues, the Polish Adult Leu-
kemia Group (PALG) has initiated an observational study 
and educational project aimed primarily at providing Po-
lish hematologists with the possibility of testing TP53 mu-
tations by NGS in RR-CLL. Additional project objectives in-
cluded sharing knowledge on TP53 mutations diagnostics 
and assessing the prognostic significance of subclonal 
TP53 mutations as well as of mutations of other selected 
genes with a potential role in CLL. Here, we report the pre-
liminary results of the project from the first 18 months af-
ter its official launch in October 2018.

Material and methods

Study population
The prospective observational study entitled ‘Assessment 
of genetic and immunologic prognostic and predictive 
factors in relapsed and refractory chronic lymphocytic 
leukemia patients treated with B-cell receptor inhibitors: 
an observational study of the Polish Adult Leukemia Study 
Group (PALG)’ was designed by PALG and approved by 
the Ethics Committee of the Institute of Hematology and 
Transfusion Medicine in Warsaw (opinion no. 47/2018). 
The study was conducted in accordance with the provi-
sions of the Declaration of Helsinki and the International 
Conference on Harmonization Guidelines for Good Clinical 
Practice.

Blood or bone marrow samples were collected in par-
ticipating hematological centers of PALG and sent to the 
central NGS laboratory (Department of Immunology and 
Department of Medical Genetics, Medical University of 
Warsaw, Warsaw, Poland). In a few cases, lymph node bio-
psies were used as biologic material. The inclusion criteria 
were 1) confirmed relapsed or refractory CLL with a previo-
us one line of treatment and 2) a confirmed negative result 
towards del(17p13) utilizing FISH. Patients with confirmed 
del(17p13) upon FISH analysis and confirmed transforma-
tion to aggressive lymphoma were excluded from the study. 
The presence of del(17p13) was diagnosed by inter phase 
fluorescence in situ hybridization (FISH) using commer-
cially available kits such as the Vysis CLL FISH Probe Kit 
(Abbott Molecular, Chicago, IL, USA) at local cytogenetic 
laboratories.

DNA isolation  
and next-generation sequencing
TP53 mutation screening was performed using DNA iso-
lated from blood, bone marrow aspirates, frozen pelleted 
leukocytes or lymph node biopsies. Most blood and bone 
marrow samples were delivered by a courier company at 
ambient temperature, stored at 4°C after delivery, and 
processed twice a week. Frozen cells and tissues were 
processed immediately after delivery. A DNA Blood Mini Kit 
(Qiagen, Hilden, Germany) was used to isolate DNA from 
blood and bone marrow and a Gentra Puregene Tissue 
Kit (Qiagen) was used to isolate DNA from leukocytes and 
tissues.

TP53 mutation status was assessed by custom target-
ed NGS panel. Typically, 500–1,000 ng DNA was convert-
ed into genomic libraries using KAPA Hyper Plus (Roche, 
Basel, Switzerland), subsequently multiplexed up to  
24-plex pools and enriched using two different SeqCap EZ 
(Roche) probe sets, covering 1.8Mb and 1.1Mb genomic 
sequences, including entire TP53 coding sequence also 
with flanking intronic regions covering splice acceptor/ 
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/donor sites. Captured multiplex libraries were paired-end 
sequenced on MiSeq FGx, HiSeq1500 or NovaSeq6000  
(Illumina, San Diego, CA, USA) instruments (depending 
on the current availability) using 2 ×150 bp or 2 ×100 bp 
reads. Mean coverages in range 65.1–674.85 (median: 
120.02) and %ge20 in range 87.2–99.7 (median: 96.6) 
were achieved for samples used to analyze TP53 muta-
tion status.

Variant discovery was performed according to GATK 
Best Practices. Variants were filtered using gnomAD da-
tabase and the internal database of the Department of 
Medical Genetics and Department of Immunology (Medi-
cal University of Warsaw) to remove common genetic va-
riations and sequencing artifacts as described previously  
by us [24].

The detection limit varied between 1% and 5% depen-
ding on the depth of sequencing and sequencing platform 
which was used (MiSeq FGx, HiSeq 1500 or NovaSeq 
6000). Information regarding limit of detection was upda-
ted for each sequencing run and included in the final report 
for each patient.  Moreover, all subclonal TP53 mutations 
(with VAF ≤10%), as well as selected clonal variants, were 
validated by deep amplicon sequencing and paired-end se-
quenced as described above (Nextera XT DNA Library Prep 
Kit, Illumina), and/or Sanger sequencing. 

According to the ERIC-TP53 recommendations [18],  
we adopted codon numbering according to NM_000546.5  
(LRG_321t1) reference transcript and used IARC-TP53 and 
ClinVar databases to assess pathogenicity of detected 
variants. For variants with unclear pathogenicity status, 
other databases were also employed such as COSMIC 
and VarSome.

Results

Patient recruitment
As of the end of March 2020, within the PALG project we 
had received biological material from 254 patients with RR-
-CLL. Several samples were excluded from the study due to 
del(17p13) (two patients, FISH results delivered after NGS 
was performed at a later date), Richter’s transformation 
(two patients, information provided by physicians at a later 
date) and TP53 analysis using NGS performed two months 
earlier in another center (one patient). For three patients, 
NGS was performed twice during the project duration but 
using two different samples from different time points. 
For eight patients, the NGS had to be performed twice 
due to poor coverage in the initial sequencing. In total, 
249 patients (260 samples) were included in the TP53 
mutation study. Samples included in the study came from 
32 centers in Poland (Table I), the cumulative number of 
samples sent between November 2018 and March 2020 
being set out in Figure 1A.

Table I. Hematology centers participating in study and number  
of patients

Hematology center
No.  

of patients

Teaching Academic Hospital No. 1, Rzeszow 26

Specialist Oncological Hospital Nu-Med, 
Czestochowa 22

Municipal Hospital, Chorzow 21

Central Clinical Hospital, Medical University  
of Warsaw, Warsaw 17

Institute of Hematology and Transfusion 
Medicine, Warsaw 15

Medical University of Lublin, Lublin 15

Medical University, Wroclaw 15

Nicolaus Copernicus Municipal Specialist 
Hospital, Torun 13

Medical University of Bialystok, Bialystok 11

Rydygier Specialist Hospital, Krakow 11

Masovian Specialist Hospital, Radom 10

Regional Hospital, Suwalki 10

Oncology Specialist Hospital, Brzozow 10

Military Institute of Medicine, Warsaw 8

Medical University of Silesia, Katowice 7

Center of Oncology of the Lublin Region  
St. Jana z Dukli, Lublin 4

Maria Sklodowska-Curie Memorial Cancer 
Center and Institute of Oncology, Warsaw 4

Maria Sklodowska-Curie Memorial Cancer 
Center and Institute of Oncology, Gliwice 4

Specialist Hospital dr Alfreda Sokolowskiego, 
Walbrzych 4

Military Institute of Medicine, Olsztyn 3

Municipal Specialist Hospital, Nowy Sacz 3

Regional Specialist Hospital, Slupsk 3

Central Clinical Hospital of the Ministry  
of the Interior, Warsaw 2

Magodent Hospital, Warsaw 2

Regional Specialist Hospital, Czestochowa 2

Lower Silesian Center for Cellular 
Transplantation with National Bone Marrow 
Donor Registry, Wroclaw

1

Clinical Hospital, Szczecin 1

Regional Hospital, Opole 1

Copernicus. Regional Oncology Centre, Gdansk 1

Regional Specialist Hospital, Olsztyn 1

Municipal Hospital, Zamosc 1

Ars Medical, Pila 1
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Pre-laboratory errors and hurdles
The most common pre-laboratory errors included: lack 
of all required documents (in particular results of blood 
morphology), lack of doctor’s or patient’s signature on 
the PALG form, expired FISH results (12 months or older 
before sample collection), and delay in sample delivery 
(three samples delivered 48 hours after blood collection). 
Despite these problems and pre-laboratory errors, sequen-
cing was successfully performed even for samples with late 
delivery (it did not influence the quality of DNA significantly, 
as subclonal mutations were detected and confirmed in 
such samples).

NGS findings
NGS analysis showed TP53 mutations in 42/249 (17%) 
patients. Clonal mutations (VAF >10%) were detected 
in 21 (8.5%) patients, while another 21 patients (8.5%) 
harbored subclonal mutations (VAF ≤10%) (Figures 1B 
and 1C). Eleven patients had two or more mutations, of 
whom six patients had both clonal and subclonal muta-
tions. A total of 57 pathogenic or probably pathogenic 
mutations were detected (Figure 2). The most frequent 
nonsynonymous polymorphism c.215C>G, p.Pro72Arg was 
detected in 231/249 (93%) patients, but according to the 
ERIC guidelines [18] it was not reported due to its probably 

Figure 1. Details of patients included in PALG study and mutations detected in TP53 gene: A. Number of patients included in study from 
November 2018 to March 2020. Black and grey bars indicate number of samples sent in a given month and total number of patients, re-
spectively; B. Percentage of patients with clonal (black) and subclonal (red) mutations in TP53 and patients without TP53 mutations (green); 
C. Variant allele frequency (VAF) of TP53 mutations detected by NGS in individual patients. Asterisks above bars indicate samples in which 
more than one mutation has been detected; only one with highest VAF is marked on graph
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benign role and high prevalence. Mutations with VAF lower 
than 10% detected in 21 patients and mutations in two 
randomly selected patients with VAF 11–20% for a total of 
23 samples were confirmed by deep amplicon sequencing 

(Nextera, Illumina). In selected patients, the presence 
of mutations was also confirmed by Sanger sequencing. 
Representative results of TP53 mutations detected using 
NGS and Sanger sequencing are shown in Figure 3.

Figure 2. Details of all 57 pathogenic mutations in TP53 gene detected in study: A. Distribution of TP53 mutations among individual exons 
(pathogenic variants were not detected in exons 2, 3 and 11, testing of these exons was performed although not required); B. Frequency 
of detected mutations according to their functional consequences. *A pathogenic synonymous variant (c.375G>A, p.Thr125Thr) affecting 
splicing of TP53 was found in one patient
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Educational part of project
As part of the PALG project, a workshop for laboratory di-
agnosticians was carried out in October 2018, attended by 
nine participants from nine laboratories (including two from 
Warsaw, two from Poznan, and one each from Brzozow, Byd-
goszcz, Katowice, Krakow, and Wroclaw). The major scope 
of the workshop focused on the ERIC (European Research 
Initiative on CLL) guidelines for the detection of TP53 
mutations. The aim of this training was to prepare other 
laboratories to successfully apply for ERIC certification. 
The workshop provided not only comprehensive tuition in 
the methods used for the detection of TP53 mutations, but 
was also partly dedicated to the analysis and interpretation 
of detected variants.

Discussion

In this prospective, observational study, we evaluated 
TP53 mutation status using NGS-based approach in RR-
-CLL patients devoid of del(17p13) by cytogenetics. We 
identified TP53 mutations in 42 out of 249 (17%) patients. 
Clonal mutations (VAF >10%) and subclonal mutations (VAF 
≤10%) were detected with an equal frequency of 8.5% (21 
patients). Numerous studies have demonstrated that sole 
TP53 mutations in the absence of del(17p13) are present 
in approximately 5–12% of treatment-naïve CLL cases 
[25]. Considering the enrichment in p53 pathway defects 
with an increasing number of administered treatments, 
del(17p13) and TP53 mutations were identified in up to 
44% of fludarabine refractory CLL patients. In this highly 
pretreated patient cohort, TP53 mutations were found in 
37% of patients utilizing Sanger sequencing. Sole TP53 
mutations were detected in 12 out of 67 (18%) patients 
without del(17p13) [15]. This ratio is higher compared to 
the number of detected clonal TP53 mutations in our study 
(8.5%), most probably due to initial exclusion from this study 
of patients harboring del(17p13). However, other factors 
might be involved and a further analysis will be possible due 
to the ongoing collection of our patients’ clinical data and 
utilization of multi-gene sequencing panels in this study.

Interestingly, in our study clonal and subclonal muta-
tions were distributed equally (8.5%) which is comparab-
le to data reported in other studies. Using an ultra-deep 
NGS sequencing Rossi et al. identified 85 TP53 mutations 
in 46 out of 309 (14.8%) newly diagnosed CLL patients. 
In this cohort, 35 mutations were clonal and detectable 
using Sanger sequencing, but an additional 50 mutations 
were missed by this method due to low abundance. The-
se subclonal mutations were only detectable by NGS [23]. 
In another group of 290 treatment-naïve CLL patients, 
41 (14%) patients had clonal and 31 (11%) had subclonal 
TP53 mutations [26].

To date, the prognostic and predictive impact of subc-
lonal TP53 mutations has been unclear and therefore not 

reflected in clinical guidelines. The recommended level of 
mutation threshold for clinical decision is currently 10% 
[18]. However, recent data from the ERIC consortium and 
different laboratories suggests that this threshold is too 
high, and should be between 1% and 10% depending on 
the ability of a given laboratory to detect such mutations. 
Nevertheless, according to the guidelines, subclonal chan-
ges in the TP53 within the range of 5–10% detected utili-
zing NGS may be optionally reported even though the cli-
nical significance of these mutations is still under debate 
[21, 23, 25]. In patients treated within the CLL8 trial, the 
presence of clonal TP53 mutations has been shown to con-
fer resistance to fludarabine-cyclophosphamide (FC) and 
fludarabine-cyclophosphamide-rituximab (FCR) regimens 
owing to short PFS and OS [27]. The majority of studies po-
int to the poor prognostic role of TP53 mutations identified 
using NGS [20, 21, 23, 28–30]. However, in the CLL4 stu-
dy, subclonal TP53 mutations did not have an impact on 
patient PFS and OS [26]. On the contrary, the recent stu-
dy by Brieghel et al. [26] confirmed the prognostic impact 
of TP53 mutations for patients with a level of detection 
greater than 1%. This is in line with the currently accepted 
consensus that the NGS error rate resulting from library 
preparation, polymerase chain reaction (PCR) enrichment 
and sequencing ranges from 0.1% to 1%, affecting the ma-
ximal sensitivity of detection of such mutations [31]. Consi-
dering the results of the above-mentioned studies, further 
research aimed at identifying the unified cut-off level for 
subclonal TP53 mutations seems necessary to incorporate 
these findings into clinical guidelines. On the other hand, 
subclonality may be misidentified if the level of CLL cells 
is low in the blood or bone marrow sample. In such cases, 
even a low level of the detected TP53 mutation may origi-
nate from a dominant clone.

In the last decade, NGS technology has not only beco-
me a highly effective tool in the discovery of new genetic 
aberrations in human malignancies, but has also become 
widely used in comprehensive molecular diagnostics of hu-
man tumors. One of the major obstacles to employing this 
technology more widely is the prohibitive cost of equipment 
and the level of expertise required to perform the analysis 
and validate the results. However, in recent years the cost 
of sequencing has dropped substantially and the availabi-
lity of NGS platforms become more widespread, especially 
in universities and research institutes, including in our co-
untry. Unfortunately, in Poland most centers employ NGS 
almost solely for research purposes and only a few clinical 
departments have constant access to diagnostics with NGS. 
This raises another issue regarding a lack of awareness of 
the advantages and limitations of NGS in clinical environ-
ments, leading in turn to limited trust in NGS results as 
a valuable diagnostic method among clinical specialists.

Our study has proved that large scale NGS testing in 
Poland is feasible and effective. Although it was limited to 
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the detection of pathogenic variants in one (TP53) gene in 
a single disease (CLL), the variability of the biological sam-
ples, as well as complex mutational landscape of TP53 gene 
encompassing almost the whole coding sequence (exon 2  
to exon 11), raised the difficulty level far beyond a typi-
cal one-gene assay. Our study generated results with high 
sensitivity and high confidence, which were consistent with 
those already published in similar cohorts of patients. Im-
portantly, the project met with great interest among hema-
tologists and we were able to recruit patients from the ma-
jority of hematology departments and hospitals in Poland, 
32 in total (see detailed list in Table I).

The cost of the analysis (2,000 PLN which equals 
approx. 440 Euro) was lower or similar compared to major 
laboratories offering similar NGS testing in Europe. This was 
possible by pooling several samples in one genomic DNA 
library and one sequencing run. However, the downside of 
such an approach was a longer time from the patient’s sam-
ple delivery to the final results, ranging from 2 to 6 weeks.
Last but not least, an important benefit of the project was 
enabling a significant number of patients with poor pro-
gnosis the access to targeted therapy with BTK inhibitor, 
while it is still restricted in Poland to RR-CLL patients with 
TP53 defects.
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