119 research outputs found
Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor
[EN] Nonoxidative methane dehydroaromatization (MDA: 6CH(4) C6H6 + 9H(2)) using shape-selective Mo/zeolite catalysts is a key technology for exploitation of stranded natural gas reserves by direct conversion into transportable liquids. However, this reaction faces two major issues: The one-pass conversion is limited by thermodynamics, and the catalyst deactivates quickly through kinetically favored formation of coke. We show that integration of an electrochemical BaZrO3-based membrane exhibiting both proton and oxide ion conductivity into an MDA reactor gives rise to high aromatic yields and improved catalyst stability. These effects originate from the simultaneous extraction of hydrogen and distributed injection of oxide ions along the reactor length. Further, we demonstrate that the electrochemical co-ionic membrane reactor enables high carbon efficiencies (up to 80%) that improve the technoeconomic process viability.This work was supported by the Research Council of Norway (grants 195912, 210418, 210765, and 219194) and the Spanish government (grants SEV-2012-0267 and ENE2014-57651). We thank the ALBA Synchrotron Light Laboratory for beam time provision. C.K. and P.K.V. have applied for a patent based on this work (PCT/EP2014/071697). Experimental data are available online at ftp://itqrepositorio.itq.upv.es/pub/.Hernández Morejudo, S.; Zanón González, R.; Escolástico Rozalén, S.; Yuste Tirados, I.; Malerod Fjeld, H.; Vestre, PK.; Coors, WG.... (2016). Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor. Science. 353(6299):563-566. https://doi.org/10.1126/science.aag0274S563566353629
Farnesoid X Receptor Induces Murine Scavenger Receptor Class B Type I via Intron Binding
Farnesoid X receptor (FXR) is a nuclear receptor and a key regulator of liver cholesterol and triglyceride homeostasis. Scavenger receptor class B type I (SR-BI) is critical for reverse cholesterol transport (RCT) by transporting high-density lipoprotein (HDL) into liver. FXR induces SR-BI, however, the underlying molecular mechanism of this induction is not known. The current study confirmed induction of SR-BI mRNA by activated FXR in mouse livers, a human hepatoma cell line, and primary human hepatocytes. Genome-wide FXR binding analysis in mouse livers identified 4 putative FXR response elements in the form of inverse repeat separated by one nucleotide (IR1) at the first intron and 1 IR1 at the downstream of the mouse Sr-bi gene. ChIP-qPCR analysis revealed FXR binding to only the intronic IR1s, but not the downstream one. Luciferase assays and site-directed mutagenesis further showed that 3 out of 4 IR1s were able to activate gene transcription. A 16-week high-fat diet (HFD) feeding in mice increased hepatic Sr-bi gene expression in a FXR-dependent manner. In addition, FXR bound to the 3 bona fide IR1s in vivo, which was increased following HFD feeding. Serum total and HDL cholesterol levels were increased in FXR knockout mice fed the HFD, compared to wild-type mice. In conclusion, the Sr-bi/SR-BI gene is confirmed as a FXR target gene in both mice and humans, and at least in mice, induction of Sr-bi by FXR is via binding to intronic IR1s. This study suggests that FXR may serve as a promising molecular target for increasing reverse cholesterol transport
Lanthanum tungstate membranes for H-2 extraction and CO2 utilization: Fabrication strategies based on sequential tape casting and plasma-spray physical vapor deposition
[EN] In the context of energy conversion efficiency and decreasing greenhouse gas emissions from power generation and energy-intensive industries, membrane technologies for H-2 extraction and CO2 capture and utilization become pronouncedly important. Mixed protonic-electronic conducting ceramic membranes are hence attractive for the pre-combustion integrated gasification combined cycle, specifically in the water gas shift and H-2 separation process, and also for designing catalytic membrane reactors. This work presents the fabrication, microstructure and functional properties of Lanthanum tungstates (La28-xW4+xO54+delta, LaWO) asymmetric membranes supported on porous ceramic and porous metallic substrates fabricated by means of the sequential tape casting route and plasma spray-physical vapor deposition (PS-PVD). Pure LaWO and W site substituted LaWO were employed as membrane materials due to the promising combination of properties: appreciable mixed protonic-electronic conductivity at intermediate temperatures and reducing atmospheres, good sinterability and noticeable chemical stability under harsh operating conditions. As substrate materials porous LaWO (non-substituted), MgO and Crofer22APU stainless steel were used to support various LaWO membrane layers. The effect of fabrication parameters and material combinations on the assemblies' microstructure, LaWO phase formation and gas tightness of the functional layers was explored along with the related fabrication challenges for shaping LaWO layers with sufficient quality for further practical application. The two different fabrication strategies used in the present work allow for preparing all-ceramic and ceramic-metallic assemblies with LaWO membrane layers with thicknesses between 25 and 60 mu m and H-2 flux of ca. 0.4 ml/min cm(2) measured at 825 degrees C in 50 vol% H-2 in He dry feed and humid Ar sweep configuration. Such a performance is an exceptional achievement for the LaWO based H-2 separation membranes and it is well comparable with the H-2 flux reported for other newly developed dual phase cer-cer and cer-met membranes.ProtOMem Project under the BMBF grant 03SF0537 is gratefully acknowledged. Furthermore, the authors thank Ralf Laufs for his assistance in operating the PS-PVD facility. Dr. A. Schwedt from the Central Facility for Electron Microscopy (Gemeinschaftslabor fur Elektronenmikroskopie GFE), RWTH Aachen University is acknowledged for performing the EBSD analysis on the PS-PVD samples.Ivanova, ME.; Deibert, W.; Marcano, D.; Escolástico Rozalén, S.; Mauer, G.; Meulenberg, WA.; Bram, M.... (2019). Lanthanum tungstate membranes for H-2 extraction and CO2 utilization: Fabrication strategies based on sequential tape casting and plasma-spray physical vapor deposition. Separation and Purification Technology. 219:100-112. https://doi.org/10.1016/j.seppur.2019.03.015S100112219A.A. Evers, The hydrogen society, More than just a vision? ISBN 978-3-937863-31-3, Hydrogeit Verlag, 16727 Oberkraemer, Germany, 2010.Deibert, W., Ivanova, M. E., Baumann, S., Guillon, O., & Meulenberg, W. A. (2017). Ion-conducting ceramic membrane reactors for high-temperature applications. Journal of Membrane Science, 543, 79-97. doi:10.1016/j.memsci.2017.08.016Arun C. Bose, Inorganic membranes for energy and environmental applications, Edt. A. C. Bose, ISBN: 978-0-387-34524-6, Springer Science+Business Media, LLC, 2009.M. Marrony, H. Matsumoto, N. Fukatsu, M. Stoukides, Typical applications of proton ceramic cells: a way to market? in: M. Marrony (ed.), Proton-conducting ceramics. From fundamentals to applied research, by Pan Stanford Publishing Pte. Ltd., ISBN 978-981-4613-84-2, 2016.Di Giorgio, P., & Desideri, U. (2016). Potential of Reversible Solid Oxide Cells as Electricity Storage System. Energies, 9(8), 662. doi:10.3390/en9080662A.L. Dicks, D.A.J. Rand, Fuel cell systems explained, ISBN: 9781118613528, John Wiley & Sons Ltd., 2018.Zheng, Y., Wang, J., Yu, B., Zhang, W., Chen, J., Qiao, J., & Zhang, J. (2017). A review of high temperature co-electrolysis of H2O and CO2to produce sustainable fuels using solid oxide electrolysis cells (SOECs): advanced materials and technology. Chemical Society Reviews, 46(5), 1427-1463. doi:10.1039/c6cs00403bGötz, M., Lefebvre, J., Mörs, F., McDaniel Koch, A., Graf, F., Bajohr, S., … Kolb, T. (2016). Renewable Power-to-Gas: A technological and economic review. Renewable Energy, 85, 1371-1390. doi:10.1016/j.renene.2015.07.066Woodhead publishing series in energy, Nr. 76, Membrane reactors for energy applications and basic chemical production, Edt. A. Basile, L. Di Paola, F.I. Hai, V. Piemonte, by Elsevier Ltd, ISBN 978-1-78242-223-5, 2015.Morejudo, S. H., Zanón, R., Escolástico, S., Yuste-Tirados, I., Malerød-Fjeld, H., Vestre, P. K., … Kjølseth, C. (2016). Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor. Science, 353(6299), 563-566. doi:10.1126/science.aag0274Malerød-Fjeld, H., Clark, D., Yuste-Tirados, I., Zanón, R., Catalán-Martinez, D., Beeaff, D., … Kjølseth, C. (2017). Thermo-electrochemical production of compressed hydrogen from methane with near-zero energy loss. Nature Energy, 2(12), 923-931. doi:10.1038/s41560-017-0029-4J. Franz, Energetic and economic analysis of CO2 retention in coal gasification power plants by means of polymer and ceramic membranes (dissertation, German), Ruhr-University Bochum, Germany, Shaker Verlag, 2013.Franz, J., & Scherer, V. (2011). Impact of ceramic membranes for CO2 separation on IGCC power plant performance. Energy Procedia, 4, 645-652. doi:10.1016/j.egypro.2011.01.100E. Forster, dissertation, Thermal stability of ceramic membranes and catalysts for H2-separation in CO-shift reactors, Energy and Environment Band, vol. 284, ISBN 978-3-95806-084-5, RUB 2015.Escolástico, S., Stournari, V., Malzbender, J., Haas-Santo, K., Dittmeyer, R., & Serra, J. M. (2018). Chemical stability in H2S and creep characterization of the mixed protonic conductor Nd5.5WO11.25-δ. International Journal of Hydrogen Energy, 43(17), 8342-8354. doi:10.1016/j.ijhydene.2018.03.060Mortalò, C., Rebollo, E., Escolástico, S., Deambrosis, S., Haas-Santo, K., Rancan, M., … Fabrizio, M. (2018). Enhanced sulfur tolerance of BaCe0.65Zr0.20Y0.15O3-δ-Ce0.85Gd0.15O2-δ composite for hydrogen separation membranes. Journal of Membrane Science, 564, 123-132. doi:10.1016/j.memsci.2018.07.015Matsumoto, H., Shimura, T., Higuchi, T., Tanaka, H., Katahira, K., Otake, T., … Mizusaki, J. (2005). Protonic-Electronic Mixed Conduction and Hydrogen Permeation in BaCe[sub 0.9−x]Y[sub 0.1]Ru[sub x]O[sub 3−α]. Journal of The Electrochemical Society, 152(3), A488. doi:10.1149/1.1852442Cai, M., Liu, S., Efimov, K., Caro, J., Feldhoff, A., & Wang, H. (2009). Preparation and hydrogen permeation of BaCe0.95Nd0.05O3−δ membranes. Journal of Membrane Science, 343(1-2), 90-96. doi:10.1016/j.memsci.2009.07.011U. Balachandran, J. Guan, S.E. Dorris, A.C. Bose, G.J. Stiegel, in: Proceedings of the 5th ICIM, A-410, Nagoya, Japan, 1998.Qi, X. (2000). Electrical conduction and hydrogen permeation through mixed proton–electron conducting strontium cerate membranes. Solid State Ionics, 130(1-2), 149-156. doi:10.1016/s0167-2738(00)00281-2Zhan, S., Zhu, X., Ji, B., Wang, W., Zhang, X., Wang, J., … Lin, L. (2009). Preparation and hydrogen permeation of SrCe0.95Y0.05O3−δ asymmetrical membranes. Journal of Membrane Science, 340(1-2), 241-248. doi:10.1016/j.memsci.2009.05.037Song, S. (2004). Hydrogen permeability of SrCe1−xMxO3−δ (x=0.05, M=Eu, Sm). Solid State Ionics, 167(1-2), 99-105. doi:10.1016/j.ssi.2003.12.010Wei, X., Kniep, J., & Lin, Y. S. (2009). Hydrogen permeation through terbium doped strontium cerate membranes enabled by presence of reducing gas in the downstream. Journal of Membrane Science, 345(1-2), 201-206. doi:10.1016/j.memsci.2009.08.041CHENG, S., GUPTA, V., & LIN, J. (2005). Synthesis and hydrogen permeation properties of asymmetric proton-conducting ceramic membranes. Solid State Ionics, 176(35-36), 2653-2662. doi:10.1016/j.ssi.2005.07.005Kniep, J., & Lin, Y. S. (2010). Effect of Zirconium Doping on Hydrogen Permeation through Strontium Cerate Membranes. Industrial & Engineering Chemistry Research, 49(6), 2768-2774. doi:10.1021/ie9015182LIANG, J., MAO, L., LI, L., & YUAN, W. (2010). Protonic and Electronic Conductivities and Hydrogen Permeation of SrCe0.95-xZrxTm0.05O3-δ(0≤x≤0.40) Membrane. Chinese Journal of Chemical Engineering, 18(3), 506-510. doi:10.1016/s1004-9541(10)60250-9Xing, W., Inge Dahl, P., Valland Roaas, L., Fontaine, M.-L., Larring, Y., Henriksen, P. P., & Bredesen, R. (2015). Hydrogen permeability of SrCe0.7Zr0.25Ln0.05O3− membranes (Ln=Tm and Yb). Journal of Membrane Science, 473, 327-332. doi:10.1016/j.memsci.2014.09.027Oh, T., Yoon, H., Li, J., & Wachsman, E. D. (2009). Hydrogen permeation through thin supported SrZr0.2Ce0.8−xEuxO3−δ membranes. Journal of Membrane Science, 345(1-2), 1-4. doi:10.1016/j.memsci.2009.08.031Hamakawa, S. (2002). Synthesis and hydrogen permeation properties of membranes based on dense SrCe0.95Yb0.05O3−α thin films. Solid State Ionics, 148(1-2), 71-81. doi:10.1016/s0167-2738(02)00047-4Escolástico, S., Ivanova, M., Solís, C., Roitsch, S., Meulenberg, W. A., & Serra, J. M. (2012). Improvement of transport properties and hydrogen permeation of chemically-stable proton-conducting oxides based on the system BaZr1-x-yYxMyO3-δ. RSC Advances, 2(11), 4932. doi:10.1039/c2ra20214jH. Matsumoto, T. Shimura, T. Higuchi, T. Otake, Y. Sasaki, K. Yashiro, A. Kaimai, T. Kawada, J. Mizusaki, Mixed protonic-electronic conduction properties of SrZr0.9−xY0.1RuxO3−δ, Electrochemistry, 72(12), 861–864.M.E. Ivanova, S. Escolático, M. Balaguer, J. Palisaitis, Y.J. Sohn, W.A. Meulenberg, O. Guillon, J. Mayer, J.M. Serra, Hydrogen separation through tailored dual phase membranes with nominal composition BaCe0.8Eu0.2O3−δ:Ce0.8Y0.2O2−δ at intermediate temperatures, Sci. Rep. 6 (2016) 34773–34787.S. Elangovan, B.G. Nair, T.A. Small, Ceramic mixed protonic-electronic conducting membranes for hydrogen separation (2007), US 7,258,820 B2, 1997.Rosensteel, W. A., Ricote, S., & Sullivan, N. P. (2016). Hydrogen permeation through dense BaCe 0.8 Y 0.2 O 3−δ – Ce 0.8 Y 0.2 O 2−δ composite-ceramic hydrogen separation membranes. International Journal of Hydrogen Energy, 41(4), 2598-2606. doi:10.1016/j.ijhydene.2015.11.053Rebollo, E., Mortalò, C., Escolástico, S., Boldrini, S., Barison, S., Serra, J. M., & Fabrizio, M. (2015). Exceptional hydrogen permeation of all-ceramic composite robust membranes based on BaCe0.65Zr0.20Y0.15O3−δ and Y- or Gd-doped ceria. Energy & Environmental Science, 8(12), 3675-3686. doi:10.1039/c5ee01793aMontaleone, D., Mercadelli, E., Escolástico, S., Gondolini, A., Serra, J. M., & Sanson, A. (2018). All-ceramic asymmetric membranes with superior hydrogen permeation. Journal of Materials Chemistry A, 6(32), 15718-15727. doi:10.1039/c8ta04764bKim, H., Kim, B., Lee, J., Ahn, K., Kim, H.-R., Yoon, K. J., … Lee, J.-H. (2014). Microstructural adjustment of Ni–BaCe0.9Y0.1O3−δ cermet membrane for improved hydrogen permeation. Ceramics International, 40(3), 4117-4126. doi:10.1016/j.ceramint.2013.08.066(Balu) Balachandran, U., Lee, T. H., Park, C. Y., Emerson, J. E., Picciolo, J. J., & Dorris, S. E. (2014). Dense cermet membranes for hydrogen separation. Separation and Purification Technology, 121, 54-59. doi:10.1016/j.seppur.2013.10.001Shimura, T. (2001). Proton conduction in non-perovskite-type oxides at elevated temperatures. Solid State Ionics, 143(1), 117-123. doi:10.1016/s0167-2738(01)00839-6HAUGSRUD, R. (2007). Defects and transport properties in Ln6WO12 (Ln=La, Nd, Gd, Er). Solid State Ionics, 178(7-10), 555-560. doi:10.1016/j.ssi.2007.01.004Haugsrud, R., & Kjølseth, C. (2008). Effects of protons and acceptor substitution on the electrical conductivity of La6WO12. Journal of Physics and Chemistry of Solids, 69(7), 1758-1765. doi:10.1016/j.jpcs.2008.01.002Magrasó, A., Polfus, J. M., Frontera, C., Canales-Vázquez, J., Kalland, L.-E., Hervoches, C. H., … Haugsrud, R. (2012). Complete structural model for lanthanum tungstate: a chemically stable high temperature proton conductor by means of intrinsic defects. J. Mater. Chem., 22(5), 1762-1764. doi:10.1039/c2jm14981hSeeger, J., Ivanova, M. E., Meulenberg, W. A., Sebold, D., Stöver, D., Scherb, T., … Serra, J. M. (2013). Synthesis and Characterization of Nonsubstituted and Substituted Proton-Conducting La6–xWO12–y. Inorganic Chemistry, 52(18), 10375-10386. doi:10.1021/ic401104mScherb, T., Kimber, S. A. J., Stephan, C., Henry, P. F., Schumacher, G., Escolástico, S., … Banhart, J. (2016). Nanoscale order in the frustrated mixed conductor La5.6WO12−δ. Journal of Applied Crystallography, 49(3), 997-1008. doi:10.1107/s1600576716006415Van Holt, D., Forster, E., Ivanova, M. E., Meulenberg, W. A., Müller, M., Baumann, S., & Vaßen, R. (2014). Ceramic materials for H2 transport membranes applicable for gas separation under coal-gasification-related conditions. Journal of the European Ceramic Society, 34(10), 2381-2389. doi:10.1016/j.jeurceramsoc.2014.03.001Forster, E., van Holt, D., Ivanova, M. E., Baumann, S., Meulenberg, W. A., & Müller, M. (2016). Stability of ceramic materials for H2 transport membranes in gasification environment under the influence of gas contaminants. Journal of the European Ceramic Society, 36(14), 3457-3464. doi:10.1016/j.jeurceramsoc.2016.05.021Medvedev, D., Lyagaeva, J., Plaksin, S., Demin, A., & Tsiakaras, P. (2015). Sulfur and carbon tolerance of BaCeO3–BaZrO3 proton-conducting materials. Journal of Power Sources, 273, 716-723. doi:10.1016/j.jpowsour.2014.09.116Yang, L., Wang, S., Blinn, K., Liu, M., Liu, Z., Cheng, Z., & Liu, M. (2009). Enhanced Sulfur and Coking Tolerance of a Mixed Ion Conductor for SOFCs: BaZr
0.1
Ce
0.7
Y
0.2–
x
Yb
x
O
3–δ. Science, 326(5949), 126-129. doi:10.1126/science.1174811Duan, C., Kee, R. J., Zhu, H., Karakaya, C., Chen, Y., Ricote, S., … O’Hayre, R. (2018). Highly durable, coking and sulfur tolerant, fuel-flexible protonic ceramic fuel cells. Nature, 557(7704), 217-222. doi:10.1038/s41586-018-0082-6Kreuer, K. D. (2003). Proton-Conducting Oxides. Annual Review of Materials Research, 33(1), 333-359. doi:10.1146/annurev.matsci.33.022802.091825Fantin, A., Scherb, T., Seeger, J., Schumacher, G., Gerhards, U., Ivanova, M. E., … Banhart, J. (2016). Crystal structure of Re-substituted lanthanum tungstate La5.4W1−y
Re
y
O12–δ (0 ≤ y ≤ 0.2) studied by neutron diffraction. Journal of Applied Crystallography, 49(5), 1544-1560. doi:10.1107/s1600576716011523Fantin, A., Scherb, T., Seeger, J., Schumacher, G., Gerhards, U., Ivanova, M. E., … Banhart, J. (2017). Relation between composition and vacant oxygen sites in the mixed ionic-electronic conductors La5.4W1−MO12− (M= Mo, Re; 0 ≤y≤ 0.2) and their mother compound La6−WO12− (0.4 ≤x≤ 0.8). Solid State Ionics, 306, 104-111. doi:10.1016/j.ssi.2017.04.005J.M. Serra, S. Escolástico, M.E. Ivanova, W.A. Meulenberg, H.-P. Buchkremer, D. Stöver, US2013-0216938-A1, 2013.Escolastico, S., Seeger, J., Roitsch, S., Ivanova, M., Meulenberg, W. A., & Serra, J. M. (2013). Enhanced H2Separation through Mixed Proton-Electron Conducting Membranes Based on La5.5W0.8M0.2O11.25−δ. ChemSusChem, 6(8), 1523-1532. doi:10.1002/cssc.201300091Gil, V., Gurauskis, J., Kjølseth, C., Wiik, K., & Einarsrud, M.-A. (2013). Hydrogen permeation in asymmetric La28 − xW4 + xO54 + 3x/2 membranes. International Journal of Hydrogen Energy, 38(7), 3087-3091. doi:10.1016/j.ijhydene.2012.12.105Palmqvist, L., Lindqvist, K., & Shaw, C. (2007). Porous Multilayer PZT Materials Made by Aqueous Tape Casting. Key Engineering Materials, 333, 215-218. doi:10.4028/www.scientific.net/kem.333.215Menzler, N. H., Malzbender, J., Schoderböck, P., Kauert, R., & Buchkremer, H. P. (2013). Sequential Tape Casting of Anode-Supported Solid Oxide Fuel Cells. Fuel Cells, 14(1), 96-106. doi:10.1002/fuce.201300153Schulze-Küppers, F., Baumann, S., Tietz, F., Bouwmeester, H. J. M., & Meulenberg, W. A. (2014). Towards the fabrication of La0.98−xSrxCo0.2Fe0.8O3−δ perovskite-type oxygen transport membranes. Journal of the European Ceramic Society, 34(15), 3741-3748. doi:10.1016/j.jeurceramsoc.2014.06.012Weirich, M., Gurauskis, J., Gil, V., Wiik, K., & Einarsrud, M.-A. (2012). Preparation of lanthanum tungstate membranes by tape casting technique. International Journal of Hydrogen Energy, 37(9), 8056-8061. doi:10.1016/j.ijhydene.2011.09.083Deibert, W., Schulze-Küppers, F., Forster, E., Ivanova, M. E., Müller, M., & Meulenberg, W. A. (2017). Stability and sintering of MgO as a substrate material for Lanthanum Tungstate membranes. Journal of the European Ceramic Society, 37(2), 671-677. doi:10.1016/j.jeurceramsoc.2016.09.033Escolástico, S., Vert, V. B., & Serra, J. M. (2009). Preparation and Characterization of Nanocrystalline Mixed Proton−Electronic Conducting Materials Based on the System Ln6WO12. Chemistry of Materials, 21(14), 3079-3089. doi:10.1021/cm900067kGil, V., Strøm, R. A., Groven, L. J., & Einarsrud, M.-A. (2012). La28−xW4+xO54+3x/2Powders Prepared by Spray Pyrolysis. Journal of the American Ceramic Society, 95(11), 3403-3407. doi:10.1111/j.1551-2916.2012.05377.xIvanova, M. E., Meulenberg, W. A., Palisaitis, J., Sebold, D., Solís, C., Ziegner, M., … Guillon, O. (2015). Functional properties of La0.99X0.01Nb0.99Al0.01O4−δ and La0.99X0.01Nb0.99Ti0.01O4−δ proton conductors where X is an alkaline earth cation. Journal of the European Ceramic Society, 35(4), 1239-1253. doi:10.1016/j.jeurceramsoc.2014.11.009Dittmeyer, R., Boeltken, T., Piermartini, P., Selinsek, M., Loewert, M., Dallmann, F., … Pfeifer, P. (2017). Micro and micro membrane reactors for advanced applications in chemical energy conversion. Current Opinion in Chemical Engineering, 17, 108-125. doi:10.1016/j.coche.2017.08.001Mauer, G., Vaßen, R., & Stöver, D. (2009). Thin and Dense Ceramic Coatings by Plasma Spraying at Very Low Pressure. Journal of Thermal Spray Technology, 19(1-2), 495-501. doi:10.1007/s11666-009-9416-0Bakan, E., & Vaßen, R. (2017). Ceramic Top Coats of Plasma-Sprayed Thermal Barrier Coatings: Materials, Processes, and Properties. Journal of Thermal Spray Technology, 26(6), 992-1010. doi:10.1007/s11666-017-0597-7Jarligo, M. O., Mauer, G., Bram, M., Baumann, S., & Vaßen, R. (2013). Plasma Spray Physical Vapor Deposition of La1−x Sr x Co y Fe1−y O3−δ Thin-Film Oxygen Transport Membrane on Porous Metallic Supports. Journal of Thermal Spray Technology, 23(1-2), 213-219. doi:10.1007/s11666-013-0004-yMarcano, D., Mauer, G., Sohn, Y. J., Vaßen, R., Garcia-Fayos, J., & Serra, J. M. (2016). Controlling the stress state of La1−Sr Co Fe1−O3− oxygen transport membranes on porous metallic supports deposited by plasma spray–physical vapor process. Journal of Membrane Science, 503, 1-7. doi:10.1016/j.memsci.2015.12.029Marcano, D., Mauer, G., Vaßen, R., & Weber, A. (2017). Manufacturing of high performance solid oxide fuel cells (SOFCs) with atmospheric plasma spraying (APS) and plasma spray-physical vapor deposition (PS-PVD). Surface and Coatings Technology, 318, 170-177. doi:10.1016/j.surfcoat.2016.10.088D. Marcano, G. Mauer, Y.J. Sohn, A. Schwedt, M. Bram, M.E. Ivanova, R. Vaßen, Plasma spray-physical vapor deposition of single phase lanthanum tungstate for hydrogen gas separation membranes, t.b. submitted (2018).Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of Gases in Multimolecular Layers. Journal of the American Chemical Society, 60(2), 309-319. doi:10.1021/ja01269a023Ried, P., Lorenz, C., Brönstrup, A., Graule, T., Menzler, N. H., Sitte, W., & Holtappels, P. (2008). Processing of YSZ screen printing pastes and the characterization of the electrolyte layers for anode supported SOFC. Journal of the European Ceramic Society, 28(9), 1801-1808. doi:10.1016/j.jeurceramsoc.2007.11.018R. Mücke, Sintering of ZrO2-electrolytes in multilayered assemblies of SOFC, PhD Thesis, Ruhr-University, Bochum, 2007.Amsif, M., Magrasó, A., Marrero-López, D., Ruiz-Morales, J. C., Canales-Vázquez, J., & Núñez, P. (2012). Mo-Substituted Lanthanum Tungstate La28–yW4+yO54+δ: A Competitive Mixed Electron–Proton Conductor for Gas Separation Membrane Applications. Chemistry of Materials, 24(20), 3868-3877. doi:10.1021/cm301723aDANIELS, A. U., LOWRIE, R. C., GIBBY, R. L., & CUTLER, I. B. (1962). Observations on Normal Grain Growth of Magnesia and Calcia. Journal of the American Ceramic Society, 45(6), 282-285. doi:10.1111/j.1151-2916.1962.tb11145.
A Unique Role for the Host ESCRT Proteins in Replication of Tomato bushy stunt virus
Plus-stranded RNA viruses replicate in infected cells by assembling viral replicase complexes consisting of viral- and host-coded proteins. Previous genome-wide screens with Tomato bushy stunt tombusvirus (TBSV) in a yeast model host revealed the involvement of seven ESCRT (endosomal sorting complexes required for transport) proteins in viral replication. In this paper, we show that the expression of dominant negative Vps23p, Vps24p, Snf7p, and Vps4p ESCRT factors inhibited virus replication in the plant host, suggesting that tombusviruses co-opt selected ESCRT proteins for the assembly of the viral replicase complex. We also show that TBSV p33 replication protein interacts with Vps23p ESCRT-I and Bro1p accessory ESCRT factors. The interaction with p33 leads to the recruitment of Vps23p to the peroxisomes, the sites of TBSV replication. The viral replicase showed reduced activity and the minus-stranded viral RNA in the replicase became more accessible to ribonuclease when derived from vps23Δ or vps24Δ yeast, suggesting that the protection of the viral RNA is compromised within the replicase complex assembled in the absence of ESCRT proteins. The recruitment of ESCRT proteins is needed for the precise assembly of the replicase complex, which might help the virus evade recognition by the host defense surveillance system and/or prevent viral RNA destruction by the gene silencing machinery
Genetic Interactions between the Drosophila Tumor Suppressor Gene ept and the stat92E Transcription Factor
Tumor Susceptibility Gene-101 (TSG101) promotes the endocytic degradation of transmembrane proteins and is implicated as a mutational target in cancer, yet the effect of TSG101 loss on cell proliferation in vertebrates is uncertain. By contrast, Drosophila epithelial tissues lacking the TSG101 ortholog erupted (ept) develop as enlarged undifferentiated tumors, indicating that the gene can have anti-growth properties in a simple metazoan. A full understanding of pathways deregulated by loss of Drosophila ept will aid in understanding potential links between mammalian TSG101 and growth control.We have taken a genetic approach to the identification of pathways required for excess growth of Drosophila eye-antennal imaginal discs lacking ept. We find that this phenotype is very sensitive to the genetic dose of stat92E, the transcriptional effector of the Jak-Stat signaling pathway, and that this pathway undergoes strong activation in ept mutant cells. Genetic evidence indicates that stat92E contributes to cell cycle deregulation and excess cell size phenotypes that are observed among ept mutant cells. In addition, autonomous Stat92E hyper-activation is associated with altered tissue architecture in ept tumors and an effect on expression of the apical polarity determinant crumbs.These findings identify ept as a cell-autonomous inhibitor of the Jak-Stat pathway and suggest that excess Jak-Stat signaling makes a significant contribution to proliferative and tissue architectural phenotypes that occur in ept mutant tissues
Old World Arenaviruses Enter the Host Cell via the Multivesicular Body and Depend on the Endosomal Sorting Complex Required for Transport
The highly pathogenic Old World arenavirus Lassa virus (LASV) and the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) use α-dystroglycan as a cellular receptor and enter the host cell by an unusual endocytotic pathway independent of clathrin, caveolin, dynamin, and actin. Upon internalization, the viruses are delivered to acidified endosomes in a Rab5-independent manner bypassing classical routes of incoming vesicular trafficking. Here we sought to identify cellular factors involved in the unusual and largely unknown entry pathway of LASV and LCMV. Cell entry of LASV and LCMV required microtubular transport to late endosomes, consistent with the low fusion pH of the viral envelope glycoproteins. Productive infection with recombinant LCMV expressing LASV envelope glycoprotein (rLCMV-LASVGP) and LCMV depended on phosphatidyl inositol 3-kinase (PI3K) as well as lysobisphosphatidic acid (LBPA), an unusual phospholipid that is involved in the formation of intraluminal vesicles (ILV) of the multivesicular body (MVB) of the late endosome. We provide evidence for a role of the endosomal sorting complex required for transport (ESCRT) in LASV and LCMV cell entry, in particular the ESCRT components Hrs, Tsg101, Vps22, and Vps24, as well as the ESCRT-associated ATPase Vps4 involved in fission of ILV. Productive infection with rLCMV-LASVGP and LCMV also critically depended on the ESCRT-associated protein Alix, which is implicated in membrane dynamics of the MVB/late endosomes. Our study identifies crucial cellular factors implicated in Old World arenavirus cell entry and indicates that LASV and LCMV invade the host cell passing via the MVB/late endosome. Our data further suggest that the virus-receptor complexes undergo sorting into ILV of the MVB mediated by the ESCRT, possibly using a pathway that may be linked to the cellular trafficking and degradation of the cellular receptor
UEV-1 Is an Ubiquitin-Conjugating Enzyme Variant That Regulates Glutamate Receptor Trafficking in C. elegans Neurons
The regulation of AMPA-type glutamate receptor (AMPAR) membrane trafficking is a key mechanism by which neurons regulate synaptic strength and plasticity. AMPAR trafficking is modulated through a combination of receptor phosphorylation, ubiquitination, endocytosis, and recycling, yet the factors that mediate these processes are just beginning to be uncovered. Here we identify the ubiquitin-conjugating enzyme variant UEV-1 as a regulator of AMPAR trafficking in vivo. We identified mutations in uev-1 in a genetic screen for mutants with altered trafficking of the AMPAR subunit GLR-1 in C. elegans interneurons. Loss of uev-1 activity results in the accumulation of GLR-1 in elongated accretions in neuron cell bodies and along the ventral cord neurites. Mutants also have a corresponding behavioral defect—a decrease in spontaneous reversals in locomotion—consistent with diminished GLR-1 function. The localization of other synaptic proteins in uev-1-mutant interneurons appears normal, indicating that the GLR-1 trafficking defects are not due to gross deficiencies in synapse formation or overall protein trafficking. We provide evidence that GLR-1 accumulates at RAB-10-containing endosomes in uev-1 mutants, and that receptors arrive at these endosomes independent of clathrin-mediated endocytosis. UEV-1 homologs in other species bind to the ubiquitin-conjugating enzyme Ubc13 to create K63-linked polyubiquitin chains on substrate proteins. We find that whereas UEV-1 can interact with C. elegans UBC-13, global levels of K63-linked ubiquitination throughout nematodes appear to be unaffected in uev-1 mutants, even though UEV-1 is broadly expressed in most tissues. Nevertheless, ubc-13 mutants are similar in phenotype to uev-1 mutants, suggesting that the two proteins do work together to regulate GLR-1 trafficking. Our results suggest that UEV-1 could regulate a small subset of K63-linked ubiquitination events in nematodes, at least one of which is critical in regulating GLR-1 trafficking
Comprehensive Profiling of N‑Linked Glycosylation Sites in HeLa Cells Using Hydrazide Enrichment
The adenocarcinoma cell line HeLa serves as a model
system for cancer research in general and cervical cancer in particular. In
this study, hydrazide enrichment in combination with state-of-the art
nanoLC−MS/MS analysis was used to profile N-linked glycosites in HeLa
cells. N-Linked glycoproteins were selectively enriched in HeLa cells by
the hydrazide capture method, which isolates all glycoproteins
independent of their glycans. Nonglycosylated proteins were removed
by extensive washing. N-Linked glycoproteins were identified with the
specific NXT/S motif and deamidated asparagine (N). Deglycosylation
was carried out in both H_2 (^16)O and H_2 ^(18)O to confirm the deamidation.
NanoLC−MS/MS analysis indicated that the method selectively enriched
at least 100 fold N-linked glycosites in HeLa cells. When both the
membrane and cytosolic fractions were used, a total of 268 unique N-glycosylation
sites were identified corresponding to 106 glycoproteins.
Bioinformatic analysis revealed that most of the glycoproteins identified
are known to have an impact on cancer and have been proposed as
biomarkers
- …