100 research outputs found

    Summaries of plenary, symposia, and oral sessions at the XXII World Congress of Psychiatric Genetics, Copenhagen, Denmark, 12-16 October 2014

    Get PDF
    The XXII World Congress of Psychiatric Genetics, sponsored by the International Society of Psychiatric Genetics, took place in Copenhagen, Denmark, on 12-16 October 2014. A total of 883 participants gathered to discuss the latest findings in the field. The following report was written by student and postdoctoral attendees. Each was assigned one or more sessions as a rapporteur. This manuscript represents topics covered in most, but not all of the oral presentations during the conference, and contains some of the major notable new findings reported

    Effect of promoter architecture on the cell-to-cell variability in gene expression

    Get PDF
    According to recent experimental evidence, the architecture of a promoter, defined as the number, strength and regulatory role of the operators that control the promoter, plays a major role in determining the level of cell-to-cell variability in gene expression. These quantitative experiments call for a corresponding modeling effort that addresses the question of how changes in promoter architecture affect noise in gene expression in a systematic rather than case-by-case fashion. In this article, we make such a systematic investigation, based on a simple microscopic model of gene regulation that incorporates stochastic effects. In particular, we show how operator strength and operator multiplicity affect this variability. We examine different modes of transcription factor binding to complex promoters (cooperative, independent, simultaneous) and how each of these affects the level of variability in transcription product from cell-to-cell. We propose that direct comparison between in vivo single-cell experiments and theoretical predictions for the moments of the probability distribution of mRNA number per cell can discriminate between different kinetic models of gene regulation.Comment: 35 pages, 6 figures, Submitte

    Heavy metals in the irrigation water, soils and vegetables in the Philippi horticultural area in the Western Cape Province of South Africa

    Get PDF
    The aims of this study were to investigate the extent of heavy metal contamination in the Philippi horticultural area in the Western Cape Province, South Africa. Concentrations of Cd, Cr, Cu, Mn, Ni, Pb and Zn were determined in the irrigation water, soils and vegetables in both winter and summer cropping seasons with an ICP-AES and tested against certified standards. Differences were found in heavy metal concentrations between the winter and summer cropping seasons in the irrigation water, soils and vegetables. Certain heavy metals exceeded the maximum permissible concentrations in the irrigation water, soils and vegetables produced in South Africa. These toxic concentrations were predominantly found in the summer cropping season for the soils and in the crops produced in winter. It is thus suggested that further studies are carried out in the Philippi horticultural area to determine the sources of the heavy metals to try and mitigate the inputs thereof and therefore reduce the amount of heavy metals entering the human food chain.ISI & Scopu

    Natural compulsive-like behaviour in the deer mouse (Peromyscus maniculatus bairdii) is associated with altered gut microbiota composition

    Get PDF
    Obsessive–compulsive disorder (OCD) is a psychiatric illness that significantly impacts affected patients and available treatments yield suboptimal therapeutic response. Recently, the role of the gut–brain axis (GBA) in psychiatric illness has emerged as a potential target for therapeutic exploration. However, studies concerning the role of the GBA in OCD are limited. To investigate whether a naturally occurring obsessive–compulsive‐like phenotype in a rodent model, that is large nest building in deer mice, is associated with perturbations in the gut microbiome, we investigated and characterised the gut microbiota in specific‐pathogen‐free bred and housed large (LNB) and normal (NNB) nest‐building deer mice of both sexes (n = 11 per group, including three males and eight females). Following baseline characterisation of nest‐building behaviour, a single faecal sample was collected from each animal and the gut microbiota analysed. Our results reveal the overall microbial composition of LNB animals to be distinctly different compared to controls (PERMANOVA p < .05). While no genera were found to be significantly differentially abundant after correcting for multiple comparisons, the normal phenotype showed a higher loading of Prevotella and Anaeroplasma, while the OC phenotype demonstrated a higher loading of Desulfovermiculus, Aestuariispira, Peptococcus and Holdemanella (cut‐off threshold for loading at 0.2 in either the first or second component of the PCA). These findings not only provide proof‐of‐concept for continued investigation of the GBA in OCD, but also highlight a potential underlying aetiological association between alterations in the gut microbiota and the natural development of obsessive–compulsive‐like behaviours

    Association analysis in over 329,000 individuals identifies 116 independent variants influencing neuroticism

    Get PDF
    Neuroticism is a relatively stable personality trait characterized by negative emotionality (for example, worry and guilt)1; heritability estimated from twin studies ranges from 30 to 50%2, and SNP-based heritability ranges from 6 to 15%3,4,5,6. Increased neuroticism is associated with poorer mental and physical health7,8, translating to high economic burden9. Genome-wide association studies (GWAS) of neuroticism have identified up to 11 associated genetic loci3,4. Here we report 116 significant independent loci from a GWAS of neuroticism in 329,821 UK Biobank participants; 15 of these loci replicated at P &lt; 0.00045 in an unrelated cohort (N = 122,867). Genetic signals were enriched in neuronal genesis and differentiation pathways, and substantial genetic correlations were found between neuroticism and depressive symptoms (rg = 0.82, standard error (s.e.) = 0.03), major depressive disorder (MDD; rg = 0.69, s.e. = 0.07) and subjective well-being (rg = –0.68, s.e. = 0.03) alongside other mental health traits. These discoveries significantly advance understanding of neuroticism and its association with MDD

    The gut-microbiota-brain axis in a Spanish population in the aftermath of the COVID-19 pandemic: microbiota composition linked to anxiety, trauma, and depression profiles

    No full text
    ABSTRACTThe prevalence of anxiety and depression soared following the COVID-19 pandemic. To effectively treat these conditions, a comprehensive understanding of all etiological factors is needed. This study investigated fecal microbial features associated with mental health outcomes (symptoms of anxiety, depression, or posttraumatic stress disorder (PTSD)) in a Spanish cohort in the aftermath of the COVID-19 pandemic. Microbial communities from stool samples were profiled in 198 individuals who completed validated, self-report questionnaires. 16S ribosomal RNA gene V3-4 amplicon sequencing was performed. Microbial diversity and community structure were analyzed, together with relative taxonomic abundance. In our cohort of N=198, 17.17% reported depressive symptoms, 37.37% state anxiety symptoms, 40.90% trait anxiety symptoms, and 8.08% PTSD symptoms, with high levels of comorbidity. Individuals with trait anxiety had lower Simpson’s diversity. Fusicatenibacter saccharivorans was reduced in individuals with comorbid PTSD + depression + state and trait anxiety symptoms, whilst an expansion of Proteobacteria and depletion of Synergistetes phyla were noted in individuals with depressive symptoms. The relative abundance of Anaerostipes was positively correlated with childhood trauma, and higher levels of Turicibacter sanguinis and lower levels of Lentisphaerae were found in individuals who experienced life-threatening traumas. COVID-19 infection and vaccination influenced the overall microbial composition and were associated with distinct relative taxonomic abundance profiles. These findings will help lay the foundation for future studies to identify microbial role players in symptoms of anxiety, depression, and PTSD and provide future therapeutic targets to improve mental health outcomes

    Shorter telomere length - A potential susceptibility factor for HIV-associated neurocognitive impairments in South African women [corrected].

    Get PDF
    The neuropathogenesis of the human immunodeficiency virus (HIV) may manifest as various neurocognitive impairments (NCI). HIV-positive individuals also have significantly shorter telomere length (TL) in peripheral blood mononuclear cells (PBMCs) and CD8+ T cells compared to HIV-negative individuals. Additionally, reduced TL has been found to be associated with chronic psychological stress. This study focused on the effects of HIV-infection and chronic stress associated with childhood trauma on telomere length, and investigated whether leukocyte TL (LTL), in particular, represents a risk factor for NCI. Eighty-three HIV-positive and 45 HIV-negative women were assessed for childhood trauma and were subjected to detailed neurocognitive testing. Blood from each participant was used to extract Deoxyribonucleic acid (DNA). Relative LTL were determined by performing real time quantitative PCR reactions as described by Cawthon et al. (2002). As expected, relative LTL in the HIV-positive individuals was significantly shorter than that of HIV-negative individuals (F = 51.56, p = <0.01). Notably, a significant positive correlation was evident between relative LTL and learning performance in the HIV-positive group. In addition, a significant negative correlation was observed between relative LTL and verbal fluency, but this association was only evident in HIV-positive individuals who had experienced trauma. Our results suggest that reduced LTL is associated with worse learning performance in HIV-positive individuals, indicating that TL could act as a susceptibility factor in increasing neurocognitive decline in HIV-infected individuals

    Human iPS cell model of type 3 long QT syndrome recapitulates drug-based phenotype correction

    Get PDF
    Long QT syndrome is a potentially life-threatening disease characterized by delayed repolarization of cardiomyocytes, QT interval prolongation in the electrocardiogram, and a high risk for sudden cardiac death caused by ventricular arrhythmia. The genetic type 3 of this syndrome (LQT3) is caused by gain-of-function mutations in the SCN5A cardiac sodium channel gene which mediates the fast Na(v)1.5 current during action potential initiation. Here, we report the analysis of LQT3 human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). These were generated from a patient with a heterozygous p.R1644H mutation in SCN5A known to interfere with fast channel inactivation. LQT3 hiPSC-CMs recapitulated pathognomonic electrophysiological features of the disease, such as an accelerated recovery from inactivation of sodium currents as well as action potential prolongation, especially at low stimulation rates. In addition, unlike previously described LQT3 hiPSC models, we observed a high incidence of early after depolarizations (EADs) which is a trigger mechanism for arrhythmia in LQT3. Administration of specific sodium channel inhibitors was found to shorten action and field potential durations specifically in LQT3 hiPSC-CMs and antagonized EADs in a dose-dependent manner. These findings were in full agreement with the pharmacological response profile of the underlying patient and of other patients from the same family. Thus, our data demonstrate the utility of patient-specific LQT3 hiPSCs for assessing pharmacological responses to putative drugs and for improving treatment efficacies. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00395-016-0530-0) contains supplementary material, which is available to authorized users
    corecore