675 research outputs found

    Lost in optimisation of water distribution systems? A literature review of system design

    Get PDF
    This is the final version of the article. Available from MDPI via the DOI in this record.Optimisation of water distribution system design is a well-established research field, which has been extremely productive since the end of the 1980s. Its primary focus is to minimise the cost of a proposed pipe network infrastructure. This paper reviews in a systematic manner articles published over the past three decades, which are relevant to the design of new water distribution systems, and the strengthening, expansion and rehabilitation of existing water distribution systems, inclusive of design timing, parameter uncertainty, water quality, and operational considerations. It identifies trends and limits in the field, and provides future research directions. Exclusively, this review paper also contains comprehensive information from over one hundred and twenty publications in a tabular form, including optimisation model formulations, solution methodologies used, and other important details

    Lost in optimisation of water distribution systems? A literature review of system operation

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.Optimisation of the operation of water distribution systems has been an active research field for almost half a century. It has focused mainly on optimal pump operation to minimise pumping costs and optimal water quality management to ensure that standards at customer nodes are met. This paper provides a systematic review by bringing together over two hundred publications from the past three decades, which are relevant to operational optimisation of water distribution systems, particularly optimal pump operation, valve control and system operation for water quality purposes of both urban drinking and regional multiquality water distribution systems. Uniquely, it also contains substantial and thorough information for over one hundred publications in a tabular form, which lists optimisation models inclusive of objectives, constraints, decision variables, solution methodologies used and other details. Research challenges in terms of simulation models, optimisation model formulation, selection of optimisation method and postprocessing needs have also been identified

    Evaluation of proteome complexes normalizing osmoregulation in salt stressed Luffa acutangula (L.) Roxb.

    Get PDF
    Modern-day agriculture is facing the challenge of sustaining global food security. However, the rapid increase in salinity stress among arable areas poses a major threat to crop health and yield. Salinity stress is one of the most common and rapidly spreading stress that has a detrimental effect on the productivity of edible plant family i.e. Cucurbitaceae. The present study endeavors to evaluate the Osmoregulators (anti-oxidants and proteins), that supports the growth of two varieties of Luffa acutangula (L.) Roxb. under salt stress. The 2-3 weeks old saplings were exposed to salt stress (up to 200 mM NaCl) for one week. Post-treatment the osmoregulatory metabolites like Trehalose, Proline & enzymic anti-oxidants like peroxidase (POD), Superoxide dismutase (SOD) and proteins using LC-MS/MS were analyzed. In both the varieties, Trehalose increased with increasing salt concentration, while the level of Proline increased in Variety 1 and decreased in Variety 2. With increasing salt concentrations, the POD activity decreased in both varieties whereas that of SOD levels increased in Variety 2 and decreased in Variety 1. The protein identified by LC-MS/MS and functional annotation analysis employing Uniport database & BlastP algorithm, aided in the detection of differentially expressed proteins in response to salt stress. This was followed by metabolic interaction annotation enrichment analysis by FunRich 3.0 tool, enabling characterization of proteins to be involved in the Calvin cycle, amino acids biosynthesis, carbohydrate and energy metabolism, ROS defence, hormonal biosynthesis and signal transduction. The augmentation of the metabolic activities of the Calvin cycle, biosynthesis of amino acids, carotenoids and peroxisomes, glycolytic pathway and the tricarboxylic acid cycle will conceivably influence the photosynthetic capacity in L. acutangula varieties under salt stress. The upsurge of key enzymes involved in these above described biological processes possibly appears to play an important role in the enhancement of salt tolerance

    A Microscopic Study on the Corrosion Fatigue of Ultra-Fine Grained and Conventional Al–Mg Alloy

    Get PDF
    The corrosion behavior of a nanocrystalline (NC)/ultrafine grained (UFG) Al–Mg based alloy was investigated and compared to its conventional counterpart 5083(H111). The corrosion fatigue (CF) was studied with respect to pit initiation, pit location and crack propagation as a function of environment. Scanning electron microscopy (SEM) with EDS was used to analyze the fracture surface of the failed specimen with respect to pitting characteristics, crack propagation and corrosion product. Load vs. cycles to failure was measured and S/N curves were generated for the UFG Al–Mg based alloy and the conventional counterpart 5083 in air and seawater

    Sea Level Muon Spectrum Below I Tev Range Derived from the Latest Primary Spectrum

    Get PDF

    Slow Strain Rate Testing and Stress Corrosion Cracking of Ultra-Fine Grained and Conventional Al–Mg Alloy

    Get PDF
    Stress corrosion cracking susceptibility was investigated for an ultra-fine grained (UFG) Al–7.5Mg alloy and a conventional 5083 H111 alloy in natural seawater using slow strain rate testing (SSRT) at very slow strain rates between 1E−5 s−1, 1E−6 s−1 and 1E−7 s−1. The UFG Al–7.5Mg alloy was produced by cryomilling, while the 5083 H111 alloy is considered as a wrought manufactured product. The response of tensile properties to strain rate was analyzed and compared. Negative strain rate sensitivity was observed for both materials in terms of the elongation to failure. However, the UFG alloy displayed strain rate sensitivity in relation to strength while the conventional alloy was relatively strain rate insensitive. The mechanical behavior of the conventional 5083 alloy was attributed to dynamic strain aging (DSA) and delayed pit propagation while the performance of the UFG alloy was related to a diffusion-mediated stress relaxation mechanism that successfully delayed crack initiation events, counteracted by exfoliation and pitting which enhanced crack initiation

    A Review of TV White Space Technology and its Deployments in Africa

    Get PDF
    The emergence of bandwidth-driven applications in the current wireless communication environment is driving a paradigm shift from the conventional fixed spectrum assignment policy to intelligent and dynamic spectrum access. Practical demands for efficient spectrum utilization have continued to drive the development of TV white space technology to provide affordable and reliable wireless connectivity. It is envisaged that transition from analogue transmission to Digital Terrestrial Television (DTT) creates more spectrum opportunity for TV white space access and regulatory agencies of many countries had begun to explore this opportunity to address spectrum scarcity. To convey the evolutionary trends in the development of TV white space technology, this paper presents a comprehensive review on the contemporary approaches to TV white space technology and practical deployments of pilot projects in Africa. The paper outlines the activities in TV white space technology, which include regulations and standardization, commercial trials, research challenges, open issues and future research directions. Furthermore, it also provides an overview of the current industrial trends in TV white space technology which demonstrates that cognitive radio as an enabling technology for TV white space technology

    An observational study of adverse drug reactions reported in a rural tertiary care hospital

    Get PDF
    Background: Adverse drug reactions (ADRs) are noxious and unintended effects of a drug that occurs at doses normally used in humans. ADRs may also result in diminished quality of life, increased physician visits, hospitalizations, and even death. The objectives of this study are to analyze and assess the causality and severity of reported ADRs.Methods: A cross sectional study of ADRs reported to Pharmacovigilance cell of MNR Medical College and Hospital Sangareddy in a year. The details of the various ADRs were statistically analyzed to find out pattern of ADRs. The WHO-UMC causality category and Hartwig-Seigel Scale were used to assess causality and severity of ADRs respectively.Results: The study shows, out of 60 suspected ADRs, the majority of ADRs were adults (68.3%) and out of whom 56% were females. According to the WHO-UMC Causality categories, 43.3% of the ADRs were categorized under Probable/likely, followed by possible (35%). The Hartwig-Siegel severity assessment scale shows that the majority (90%) of suspected ADRs were of mild category.Conclusions: The pattern of ADRs reported in our study is comparable to other studies. The commonest organ system affected was gastrointestinal tract, nervous and cutaneous system. Antimicrobial agents were causing maximum ADRs and medicine and allied departments have more number of ADRs. This study provides a valuable database for ADRs due to all commonly used drugs at hospitals and also helps in creating awareness regarding safe & judicious use of drugs to prevent ADRs
    corecore