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Abstract

Preterm birth affects approximately 1 out of every 10 births in the United States, leading to high
rates of mortality and long-term negative health consequences. To investigate the mechanisms
leading to preterm birth so as to develop prevention strategies, researchers have developed nu-
merous mouse models of preterm birth. However, the lack of standard definitions for preterm birth
in mice limits our field’s ability to compare models and make inferences about preterm birth in
humans. In this review, we discuss numerous mouse preterm birth models, propose guidelines
for experiments and reporting, and suggest markers that can be used to assess whether pups are
premature or mature. We argue that adoption of these recommendations will enhance the utility
of mice as models for preterm birth.

Summary Sentence

To improve reporting of mouse models of preterm birth, a set of universal guidelines and simple
assays of developmental markers are proposed to distinguish between mature and premature
pups.

Key words: preterm birth, mouse models, pregnancy, gestation, parturition.

Introduction

Every year, approximately 15 million babies (10% of all births
worldwide) are born preterm, defined as delivery before 37 weeks of

gestation [1–3]. Preterm birth is the leading cause of infant mortal-
ity [4], and those born prematurely have increased lifelong risks of
adverse health outcomes including cognitive impairment, cardiovas-
cular disease, and chronic pulmonary disease [5]. In approximately
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one third of preterm births, labor is induced or cesarean section
is performed because of maternal or fetal complications such as
preeclampsia, intrauterine growth restriction, or fetal distress. How-
ever, the majority of preterm births are spontaneous, brought about
by preterm labor (uterine contractions leading to cervical change
and delivery) or preterm premature rupture of fetal membranes
(PPROM) [6, 7]. Unfortunately, the multiple causes of preterm la-
bor have not been fully determined, and we have limited ability to
predict or prevent preterm birth [8–10].

To address these limitations, researchers have developed various
mouse models of preterm birth [11]. Mice are useful for studying
the timing of birth because they have a short gestation, can easily
be genetically manipulated, are inexpensive, and can be studied in
large numbers [12]. Additionally, key components of the labor and
delivery process are conserved between mice and humans. For ex-
ample, the expression levels of several proteins that activate uterine
contractions including prostaglandins, oxytocin, and connexin-43
are elevated at term in both species [11, 13–15]. Finally, parturi-
tion timing is somewhat variable in both humans, in whom 90%
of births occur between 37 and 42 weeks of gestation, and mice,
in which gestation lengths vary between strains from 19 to 21 days
[16].

Despite these similarities, three key physiological differences be-
tween human and mouse pregnancy are worth mentioning. First,
whereas women typically have singleton pregnancies [17] within a
single uterine cavity, mice commonly have 4 to 10 pups per litter (de-
pending on strain) [16] within two uterine horns. This can complicate
comparisons between species because women carrying multiple preg-
nancies are at increased risk for preterm birth [18]. Second, although
progesterone is required to maintain pregnancy and is initially pro-
duced by the corpus luteum in both humans and mice, its production
thereafter is regulated differently in the two species. In humans, the
placenta takes over progesterone production after gestational week
7 or 8, and progesterone levels rise fairly continuously until the end
of pregnancy [19, 20]. At the end of human pregnancy, a shift in
progesterone receptor isoform expression and local increases in pro-
gesterone metabolism [21, 22] result in a functional withdrawal of
the “pregnancy-maintaining” hormone. In mice, progesterone syn-
thesis and levels decrease while local progesterone metabolism [23]
increases dramatically in the last two days of pregnancy, facilitating
the onset of parturition. Third, although estrogens inhibit uterine
quiescence and promote cervical ripening after progesterone action
decreases (by promoting production of uterotonins and contraction-
associated proteins, including: connexin-43, oxytocin receptor, cy-
clooxygenase 2, and prostaglandin F receptor) in both humans and
mice, estrogen is regulated differently in the two species. In humans,
circulating estrogens, derived from the ovary and placenta, are high
throughout gestation. In mice, estrogens are synthesized by the ovary
at low levels in the first half of pregnancy and then markedly increase
in the latter half of gestation.

As we detail in this review, “preterm birth” is loosely defined for
mice, and our field lacks clear, accepted guidelines for conducting
experiments and reporting results. Thus, we cannot easily compare
mouse studies and use their results to improve our ability to pre-
dict and prevent preterm birth in women. This review seeks to fill
this gap by describing mouse preterm birth models published in the
literature and the ways in which they aim to represent the human
condition. Additionally, we discuss experimental differences leading
to inconsistent definitions of preterm birth in mice and propose cri-
teria to provide more uniform assessment of mouse models. Finally,
we suggest that investigators should assess and report the develop-

mental status (mature or premature) of offspring. Toward this end,
we describe promising fetal developmental markers that can be used
to distinguish between mature and premature pups.

Mouse models of preterm birth

Here, we review the major classes of mouse preterm birth models,
categorized by pathologic state. Representative examples are pro-
vided in Table 1.

Infection
Multiple studies have implicated activation of inflammatory path-
ways in the process of normal uncomplicated labor (as reviewed
in [24]). However, early initiation of the inflammatory pathway
by infection contributes to between 25% and 40% of all human
preterm births [25–27]. Infections can develop in two major ways.
Chorioamnionitis or intrauterine infection can arise systemically, or
commensal bacteria can ascend from the female genital tract. Several
mouse models of infection-induced preterm birth have been devel-
oped [28, 29], most commonly using Escherichia coli or the toxic
component on the surface of gram-negative bacteria, lipopolysaccha-
ride (LPS). Other bacteria associated with increased risk of preterm
birth in humans, and therefore studied in mice, include Ureaplasma,
Chlamydia trachomatis, Group B streptococcus (GBS; Streptococ-
cus agalactiae), and Porphyromonas gingivalis. To mimic local in-
fection, investigators have performed intrauterine, intraamniotic, or
intraperitoneal injections with live or heat-killed bacteria. To simu-
late systemic infection, they administer injections intraperitoneally,
and to mimic ascending infections, they inject bacteria vaginally or
via the intrauterine route [30–32].

Mice injected with live or heat-killed E. coli or LPS on 14.5–
15.5 days post coitus (dpc) delivered within 7–48 h, depending on
the route of administration and LPS serotype used. Specific E. coli-
derived LPS serotypes differentially activated proinflammatory re-
sponses, caused mice to deliver at different times postinjection, and
were associated with varying levels of offspring survival [33]. Both
E. coli and LPS stimulate the Toll-like receptor (TLR)-4 in the uterus
and activate an inflammatory cascade [34]. Further investigation of
localized intrauterine inflammation revealed that the TLR-4 path-
way stimulated platelet activating factor, an important mediator of
the signal transduction pathway that led to inflammatory-induced
preterm delivery [35]. In addition, LPS administered vaginally has
been shown to work through the complement receptor C5a, affect-
ing cervical remodeling by increasing metalloproteinase-9 activity
and collagen degradation [36].

Intrauterine injections of lipoteichoic acid (an anionic polymer on
the surface of gram-positive bacteria), peptidoglycan (also a major
component on the surface of gram-positive bacteria), or polyinosinic
acid (an analog of viral double-stranded RNA) caused mice to deliver
preterm by mechanisms similar to that of LPS, albeit through dif-
ferent TLRs [37, 38]. Specifically, administration of the bacterial
peptidoglycan-derived peptide γ -D-glutamyl-meso-diaminopimelic
acid, an agonist of the pattern recognition receptor Nod-1, caused
mouse preterm birth via maternal-fetal inflammation [39].

In humans, GBS is the leading cause of perinatal infection, and
maternal GBS infection increases the risk for preterm birth [40, 41].
To model this etiology, Hirsch and colleagues injected pregnant mice
(intraperitoneal or intrauterine) with 109 heat-killed GBS on 14.5
dpc [42]. In this model, approximately 86% of pregnant mice de-
livered within 18 h and showed signs of placental and membrane
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apoptosis. In another model, 75% of mice that were vaginally colo-
nized with GBS on 16 dpc delivered preterm. However, 0% of moth-
ers that were vaccinated with GBS before mating delivered preterm,
and their pups had higher survival rates and lower levels of neonatal
GBS infection than those from unvaccinated mothers [42].

Another bacterial genus that commonly infects the uterus and
causes preterm birth in humans is Ureaplasma, a member of the My-
coplasmataceae family [43]. Additionally, Ureaplasma is the most
frequently isolated bacterial pathogen in cases of chorioamnioni-
tis [44]. One group reported that injecting a diacylated lipopeptide
derived from Ureaplasma parvum into the uterus of pregnant mice
on 15 dpc resulted in preterm delivery, although the day of delivery
was not defined. This work revealed that Ureaplasma likely induced
preterm birth by binding to TLR-2 and activating the NF-κB inflam-
matory cascade [45].

The pathogen Chlamydia trachomatis is the most prevalent sex-
ually transmitted bacteria and is associated with preterm delivery
[46]. Mice infected with 105–107 inclusion-forming units (IFU) of
C. trachomatis delivered on 15.8–16.4 dpc, whereas those infected
with 101–104 IFU delivered on 19.5–19.6 dpc, and those that re-
ceived vehicle or no treatment delivered had a mean gestation length
of 19.3 dpc [47]. Acute to severe inflammation and C. trachoma-
tis inclusions were noted in the maternal uterine wall, endometrium,
and fetal membranes but were absent in the amnion and fetal organs.

Urinary tract infections, most commonly caused by E. coli [48],
have long been known to be associated with increased risk for
preterm birth in humans [49]. To model this etiology, mice were in-
fected with E. coli via urethral catheterization into the urinary blad-
der on 7 dpc. Nearly 90% of those infected with bacteria expressing
the Dr adhesin delivered between 11 and 18 dpc [50], whereas only
10% of those infected with E. coli not expressing this Dr adhesin de-
livered preterm. Escherichia coli expressing Dr adhesin were able to
colonize the kidneys and spleen of the mothers and transfer through
the placenta to the fetuses, causing reduced fetal weight and poor
organ development.

Maternal infections distant from the uterus have also been impli-
cated in preterm birth. For example, some data suggest that maternal
periodontal disease increases the risk of preterm birth by sevenfold
[51]. Periodontal pathogens are capable of entering the bloodstream
and spreading throughout the body and have been detected in the
amniotic fluid [52, 53]. Moreover, P. gingivalis antigens have been
detected in the placentas of women with chorioamnionitis [54]. In a
mouse model of periodontal infection, P. gingivalis was injected into
the first molar chambers of female mice 6 weeks before mating. In-
fected mice delivered 2 days earlier and had higher circulating levels
of the proinflammatory cytokines tumor necrosis factor-alpha, inter-
leukin (IL)-17, IL-6, and IL-1B than noninfected mice. Additionally,
the bacteria were found in the placentas, and the mothers showed
features of PPROM and placental abruption [55].

Inflammation
Inflammation in the absence of overt infection is a common etiology
of preterm birth. In fact, sterile intra-amniotic inflammation is asso-
ciated with ∼26% of all preterm deliveries and is more common in
early than in late preterm deliveries [56, 57]. An important contribu-
tor in sterile intra-amniotic inflammation is the cytokine IL-1, which
is expressed in the human decidua, promotes prostaglandin produc-
tion, and is detected at high levels in the uterus of women who deliver
preterm [58]. IL-1 stimulates preterm birth in rabbits and nonhuman
primates [59, 60]. To model this in mice, researchers injected preg-

nant mice with IL-1 three times between 15 and 17 dpc, leading to
delivery within 24 h [61]. Other important players in sterile intra-
amniotic inflammation are danger signals, such as damage-associated
molecular pattern molecules and alarmins, which, upon stimulation
by cellular stress and necrosis, activate the innate immune system
[62]. One such alarmin, high mobility group box 1 (HMGB1), is in-
creased in women with intra-amniotic inflammation [63]. To model
this etiology of preterm birth, researchers injected HMGB1 into the
amniotic sacs of fetuses on 14.5 dpc; 57% of the injected mice de-
livered by 17.5 dpc, whereas all of the controls delivered at full term
(19.5 dpc) [64].

Cesarean section
To benefit maternal or fetal health, preterm cesarean delivery may be
performed after either medically indicated or spontaneous preterm
labor. To investigate the effect of cesarean delivery on fetal devel-
opment and mortality, researchers surgically removed mouse fetuses
before the normal delivery date and found that pups of the strain
CD-1 could only be resuscitated when delivered on 19 or 20 dpc
(20 dpc was the normal delivery time for this strain in their colony)
[65], indicating that mice cannot survive outside the uterus if birth
occurs more than 1 day preterm.

Preterm premature rupture of membranes
In women, PPROM is a significant pregnancy complication. In this
condition, the chorioamniotic membrane surrounding the fetus rup-
tures before 37 weeks of pregnancy, breaching the barrier between
the extrauterine and intrauterine environment, allowing the amniotic
fluid to leak out, and increasing the risk for infection and preterm
birth. PPROM can be caused by infection, overdistension of the
uterus and amniotic sac (such as in multiple pregnancies), trauma,
or genetic disorders. For example, women with Ehlers-Danlos syn-
drome carry mutations in the genes encoding proteins involved in
assembly of collagen and elastic fibers and are at increased risk of
PPROM, cervical insufficiency, uterine rupture, and delivering an
intrauterine growth-restricted fetus [66]. C3H mice with targeted
mutations in genes encoding specific proteoglycans, such as bigly-
can and decorin, displayed an Ehlers-Danlos-like phenotype that
included reduced litter size and intrauterine growth restriction. Ad-
ditionally, despite lacking an inflammatory response, these mice de-
livered before 18.0 dpc, with 43% delivering by 17.0 dpc, and none
of the fetuses survived [67].

The extracellular matrix glycoprotein fetal fibronectin (fFN) is
part of the amniotic membranes, and detection of fFN in cer-
vical and vaginal fluid has been associated with an increased
risk for spontaneous preterm birth. However, few patients with
a positive fFN result will actually deliver early [10, 68, 69]. In
mice, injection of fFN at 17.0 dpc causes preterm delivery within
12–36 h, likely via PPROM induced by activation of matrix metallo-
proteinases and cyclooxygenase-2 [70]. Likewise, injecting mice with
thrombin at 17.0 dpc increased levels of matrix metalloproteinases
and cyclooxygenase-2 and caused delivery of non-viable pups within
24 h [70–72].

Early progesterone withdrawal
A successful pregnancy requires uterine smooth muscle quiescence
before parturition/labor. During gestation, progesterone is one of the
predominant hormones produced by the placenta and is responsible
for keeping the myometrium in a quiescent state. Progesterone levels
remain high throughout human pregnancy, but women undergo a

D
ow

nloaded from
 https://academ

ic.oup.com
/biolreprod/article-abstract/99/5/922/4992298 by W

ashington U
niversity, Law

 School Library user on 23 February 2020



Preterm mouse models, 2018, Vol. 99, No. 5 929

“functional” progesterone withdrawal at the end of pregnancy. This
reduction in progesterone action is mediated by alterations in the
ratio of progesterone receptor A to progesterone receptor B [73],
changes in cofactor expression, and/or local metabolism of pro-
gesterone, thereby allowing contractions to initiate and the cervix
to ripen [74]. Consistent with this idea, the anti-progesterone and
anti-glucocorticoid drug Mifepristone, also known as RU486, in-
duces uterine contractions and cervical ripening. To model early
progesterone withdrawal, investigators injected mice with RU486 on
12–14 dpc, resulting in delivery within 18 h in ∼84% of C3H/HeN
mice. Although this study reported that pups were born alive, postna-
tal pup survival was not discussed [75]. RU486-induced premature
cervical ripening in Blk6/129SvEv mice was reported to be similar to
term ripening and distinct from LPS-induced premature ripening in
terms of gene expression, immune cell populations, and microstruc-
tural reorganization of collagen [76, 77]. In other reports, RU486
was suggested to promote cervical remodeling by activating the com-
plement receptor C5a [36].

Prostaglandins
At the end of human pregnancy, levels of the prostaglandins PGE2

and PGF2α increase, bind to receptors on the uterus, and promote
contractions. Clinically, PGE1 (misoprostol) is used to induce both
uterine contractions and cervical ripening (effacement or thinning).
As an alternative to giving women exogenous prostaglandins, me-
chanical compression of the cervix promotes local release of endoge-
nous prostaglandins [78, 79]. To model excess prostaglandin activ-
ity in mice, researchers created a C57BL/6-129/SvJ mouse line with
a hypomorphic mutation in hydroxyprostaglandin dehydrogenase
(PGDH), which hydrolyzes prostaglandins. These mice had elevated
levels of PGE2 and PGF2α and delivered approximately one-half day
early [80]. Consistent with these earlier studies, co-administration
of PGE2 and a PGDH inhibitor on gestation day 15 induced birth
within 12 to 48 h [81]. In another study, C3H/HeN inbred wild-
type mice treated with 20 μg of PGF2α on 16 dpc delivered 19.3 h
postinjection, whereas vehicle-injected mice delivered 53.5 ± 13.6 h
postinjection [82].

Uterine senescence
One hypothesis states that gestation length is governed by the tim-
ing of placental and decidual senescence, marked by a reduction in
telomere length, and that parturition is initiated when these tissues
become “old” [83]. Cellular aging is promoted by signaling through
mammalian target of rapamycin complex 1 (mTORC1). The tumor
suppressor p53 reduces mTORC1 signaling by activating AMP ki-
nase, thereby inhibiting the aging process. To examine the relation-
ship between uterine senescence and parturition, mice were gener-
ated lacking p53 specifically in the uterus. Once pregnant, these mice
had decreased AMP kinase activation and increased mTORC1 sig-
naling, resulting in early decidual senescence and increased incidence
of preterm delivery (before 19 dpc) in some females [84–86]. Mod-
eling gene–environment interactions, work in this model demon-
strated that low-dose LPS injection further increased the incidence
of preterm birth [87].

Uterine quiescence
The protease caspase-3 helps maintain quiescence by cleaving con-
tractile proteins during gestation [88]. Condon and colleagues hy-
pothesized that caspase-3 is maintained in an active state during preg-
nancy by the endoplasmic reticulum (ER) stress response and that

its activity is reduced by the unfolded protein response at the end of
pregnancy. In support of this model, injecting mice with tunicamycin,
which induces excessive ER stress response, on 15 dpc caused early
increases in levels of the contractile proteins connexin-43, alpha
actin, and gamma actin, and resulted in dose-dependent early onset
of labor beginning on 16 dpc. Conversely, co-administration of 4-
phenylbutrate, an inhibitor of ER stress, prevented both the increase
in contractile proteins and preterm birth [89].

Endocannabinoid signaling pathway
In human pregnancy, levels of the endocannabinoid anandamide are
high in early gestation, decrease during mid-gestation, and spike at
the onset of labor [90, 91]. Anandamide is thought to affect par-
turition timing by controlling secretion of corticotropin-releasing
hormone (CRH) [92], which regulates the duration of pregnancy
and onset of labor [93, 94]. Anandamide and another cannabi-
noid, 2-arachidonoxylglycerol, signal through the G protein-coupled
cannabinoid receptor CB1 [95–98]. Deletion of the CB1 gene caused
pregnant mice to go into preterm labor, delivering about one-half
day before term. In this model, preterm delivery was thought to oc-
cur because of early progesterone withdrawal and increased estrogen
production during pregnancy. Additionally, signaling through CB1
may control the CRH/corticosterone endocrine axis, as loss of CB1
caused an early rise in CRH and high levels of corticosterone during
pregnancy [99].

Hyperhomocysteinemia
In a case-control study of 651 women, elevated homocysteine in
maternal blood (hyperhomocysteinemia) during pregnancy was as-
sociated with increased odds of preterm birth [100]. One cause of
hyperhomocysteinemia is a mutation in the gene encoding cystathio-
nine B-synthase (CBS), an enzyme in the trans-sulfuration pathway
[101]. To test a possible mechanism linking hyperhomocysteinemia
to preterm birth, mice were generated carrying a mutation in CBS.
CBS−/− pregnant mice had increased blood levels of homocysteine,
developed preterm uterine contractions, and delivered significantly
early (16.6 dpc vs. 20.2 dpc). Further analysis of this model demon-
strated that the contractions were caused by preterm expression of
the oxytocin receptor and increased PGE2 synthesis by the enzyme
prostaglandin endoperoxide synthase 2 [102].

Environmental effects: cigarette smoking
and dioxin exposure
Women who smoke cigarettes during pregnancy are at a higher risk
of delivering preterm than nonsmokers [103]. To model this etiol-
ogy, Ng and Zelikoff exposed mice to cigarette smoke via inhalation
between 2 and 18 dpc. The mice exposed to cigarette smoke deliv-
ered at 19.6 dpc, whereas unexposed mice delivered at 20.3 dpc; the
pups survived in both groups [104]. A major toxic component of
cigarettes is 2,3,7,8-tetrachlorodibenzo-p-dioxin (dioxin), which is
also a ubiquitous environmental contaminant, a by-product of the
industrialized process, and an endocrine disruptor. Because animals
and humans are most sensitive to environmental toxicant exposure
during in utero development, Bruner-Tran and Osteen exposed preg-
nant mice to dioxin and then examined the effects on fertility and
preterm birth in the next two generations [105]. They found that
36% of females in the F1 generation delivered preterm as adults.
Moreover, 25% of the F2 generation (which were exposed as germ
cells of the F1 mice in utero) delivered preterm. Furthermore, when
F1 females were exposed to GBS, mouse parvovirus, or LPS, the rates
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of preterm birth increased to 83, 86, and 100%, respectively [105,
106]. This model suggests that toxicant exposure acts additively with
other risk factors to cause preterm birth.

Other models of PTB
Additional mouse models of preterm birth working through mech-
anisms of action not discussed above include inhibition of nitric
oxide synthesis by treating mice with NG-nitro-L-arginine methyl
ester [107]; inhibition of soluble guanylate cyclase by treating mice
with methylene blue [108]; exogenous surfactant protein-A, which
initiates the NF-κB-signaling cascade in the uterus [109]; injection
of neuromedin B, which acts through its receptor to induce la-
bor onset via the RELA (NF-κB P65)/IL6-mediated pathway [110];
and alcohol-induced preterm birth, which is associated with ele-
vated levels of uterine PGE and PGF2α and increased expression
of contraction-associated proteins and is prevented by pretreatment
with the prostaglandin synthesis inhibitor aspirin [14, 111].

Defining preterm birth in mouse models

Given the large number of available mouse preterm birth models,
standard definitions would allow researchers to appropriately com-
pare results between studies and make meaningful inferences for
human preterm birth. We argue that two related questions should
be addressed when considering available and newly developed mod-
els: (1) Is the gestational length truly shortened, or does delivery
occur within the normal range for the mouse strain? (2) Does the
model deliver pups that are developmentally immature at delivery?
Below, we draw on representative examples listed in Table 1 to high-
light variations in experimental design that complicate our ability to
evaluate and compare the current mouse models of preterm birth.

Strain-specific characteristics
Researchers have used several different strains of mice to generate
models of preterm birth. The mouse strain is an important consider-
ation given the findings of Murray et al. that gestational lengths can
vary by as much as 41.7 h, or a full 1.72 days [16]. For example, the
FVB/NJ, C57BL/6J, 129S1/SVIMJ, and A/J strains have average ges-
tational lengths of 450.6, 462.4, 486.3, and 492.3 h, respectively,
corresponding to between 18.8 and 20.5 days [16]. Clearly, the
strain background has to be considered when determining whether
a preterm birth model has shortened gestation.

Approaches for timed matings
Comparing gestational lengths between studies is complicated by
variations in breeding protocols. For example, whereas most inves-
tigators breed mice overnight, some breed for undefined periods of
time, and others obtain timed-mated animals from commercial sup-
pliers. Mating strategies should be standardized given that interlitter
variability in fetal body weights is greater when mice are bred con-
tinuously than when they are mated for 2 h or overnight [112].
Additionally, our field should standardize the definition of the start
of gestation. Investigators record the time at which they see a copu-
lation plug as 0.0, 0.5, or 1.0 dpc. This could result in up to a 24-h
difference in timing of gestational length, perhaps leading a delivery
to be scored as preterm when it is within the normal variation of
delivery time for that mouse strain.

Monitoring the timing of parturition
Multiple methods have been used to monitor the timing of delivery.
The onset of parturition is typically defined as the time of deliv-
ery of the first pup, which can be precisely determined by using a
video camera with infrared lighting to record events in the dark. In
contrast, strategies such as checking the dam multiple times during
the day and recording the pup number may lead to inaccuracies be-
cause newly delivered pups can be hidden in the bedding or may
be cannibalized if the dam considers the offspring to be abnormal.
Furthermore, mice subjected to frequent disturbances in their cage
or a nearby cage may enact a “predator response” defense mecha-
nism that can alter their parturition behavior [113]. If an investigator
checks the dam only on the expected morning of delivery, he or she
may not realize that offspring were already delivered and thus may
report that gestation was longer than it actually was.

Measures of development
Few studies provide comprehensive fetal outcome measurements of
their preterm birth models [108]. Typically, studies report survival
of offspring born preterm (Table 1), yet few provide details on the
pups’ developmental status (immature or mature).

Proposed guidelines for defining preterm birth

in mouse models

For all studies, investigators should be aware that specific animal
facility characteristics, such as diets, bedding, water, animal hus-
bandry, co-bedding with other pregnant dams, environment (con-
ventional vs. barrier systems), and noise pollution, could affect ges-
tation length. Thus, instead of relying on published values, investiga-
tors should measure and report term gestational length in wild-type,
untreated mice in the same facility in which they will do their experi-
ments. Additionally, we suggest the following guidelines in reporting
studies of existing and novel mouse models of preterm birth.

Breeding and timing of gestational length
Because gestational length varies by mouse strain, it is extremely
important to breed controls of the same genetic background when
using transgenic models. We suggest two methods of breeding:

Timed breeding
One of the most accurate methods for estimating gestational length
is to restrict the mating period [112]. Because hormonally receptive
females usually mate within 1 h [114], pairing estrus-stage females
with males for 2 to 4 h and then checking for the presence of a cop-
ulation plug allows for accurate assessment of gestational length.
Alternatively, multiple breeding cages of unstaged females can be
set up for a restricted time. The time at which the copulation plug
is noted should be recorded as 0.0 dpc, and the following morn-
ing should be considered 0.5 dpc. We recommend caution in using
timed-mated mice in preterm birth studies provided by a commer-
cial supplier, as gestational length is likely to be affected by shipping,
handling of the mice, potential quarantine, temperature changes, and
alterations in light–dark cycles.

Overnight breeding
When mice cannot be bred for a restricted time period or less preci-
sion is acceptable, mice can be bred overnight. Place estrus-stage
dams with stud males overnight, and check for the presence of
a copulation plug before 8:00 am the next day. This method is
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Figure 1. Skin permeability as a marker of maturity. In C57BL/6 mice, dye permeated mice at 17.0 dpc. By 18.0 dpc, dye was excluded on the dorsal side, but
the pup remained blue on the ventral side. By 19 dpc, the skin was impermeable and faint blue stain was only noted on the ventral side. (Please see the online
version for the color figure.)

effective because fertilization occurs around midnight, or the mid-
point of the active period, in a 12-h dark/light cycle [115]. Thus, the
time at which the plug is noted should be recorded as 0.5 dpc. Trans-
genic facilities commonly use this method and find that the majority
of fertilized eggs harvested the morning after overnight mating are
at the 0.5 dpc stage. This method will allow investigators to assign
the time of conception (and thus the length of gestation) within a
12- to 18-h window.

Monitoring pregnancy outcomes
Timing and delivery complications
The most precise and efficient way to monitor delivery is to use an
infrared video camera system. This allows an investigator to observe
delivery of the first pup (which should be defined as the end of
gestation), total duration of parturition, and subtle phenotypes such
as dystocia, which can be ascertained by measuring the pup-to-pup
interval (which averages 15 min for C57Bl/6; unpublished data). This
method also allows detection of delivery even if the dam cannibalizes
her litter.

Delivery outcomes
To establish a new model of preterm birth or validate an exist-
ing one, several informative characteristics should be recorded for
each delivery: (1) litter size, because of the strong inverse correla-
tion with gestational length [16, 116]; (2) offspring mortality rate,
because any increase may indicate death related to prematurity; (3)
pup crown-rump length [117]; and (4) pup weight. However, these
characteristics are not definitive indicators of prematurity and may
vary by strain. Lastly, we suggest use of reliable fetal growth mark-
ers that, preferably, are relevant to human fetal development. We
describe two classes of such markers, involving skin and the lungs,
in the next section.

Mouse fetal development markers
Here, we suggest two straightforward methods to assess fetal tissue
maturation. The Institutional Animal Care and Use Committee at
each respective institution approved all protocols performed for this
review.

Skin barrier function
The skin forms a permeability barrier that regulates body temper-
ature, prevents excess water loss, and prevents invasion by harm-
ful pathogens. In humans, the epithelium fully develops its barrier
function by late gestation (∼34 weeks) [118]. Therefore, infants
born before 30 weeks’ gestation are at increased risk for infection
and loss of temperature and fluid [119, 120]. The barrier develops
when the outer layer of the epidermis forms the stratum corneum,
which is composed of a tough insoluble cornified envelope that is
“glued” together by a complex extracellular lipid matrix [121]. Bar-
rier function develops similarly in mice late in gestation, beginning at
17 dpc and developing in a dorsal-to-ventral pattern until birth, when
the barrier is fully formed. Thus, assessment of barrier function can
indicate developmental stage of pups.

Methods to assess skin barrier maturation
Barrier function can be assessed by performing a whole-mount skin
permeability assay as previously reported [122]. To perform this as-
say, dissect pups from the dams on the day of delivery, place them
in a solution containing the blue dye 5-bromo-4-chloro-3- indolyl-β,
D-galactopyranoside (X-gal), and gently nutate for 8 h to overnight
at 37◦C [122]. Wash samples twice with phosphate-buffered saline,
fix overnight in 4% formaldehyde at 4◦C, and store in phosphate-
buffered saline at 4◦C. Evaluate pups for blue dye penetration.
Figure 1 shows examples of pups at different gestational stages sub-
jected to this assay. For C57Bl6/J mice at 17 dpc, the skin barrier
is immature and fetuses are uniformly blue. By 18 dpc, the skin on
the dorsal side starts to cornify and becomes impermeable to the dye
and is thus white, while the ventral side is still permeable and thus
is blue. By late 18 to 19.0 dpc, the skin barrier has fully formed and
the skin is impermeable to the dye, so the pup is almost completely
white.

Skin maturation can also be assessed histologically [123]. To per-
form this assay, fix fetuses in 10% formalin, dehydrate them through
an ethanol series, embed them in paraffin, cut 8 μm sections, mount
the sections on glass slides, and perform routine hematoxylin and
eosin (H&E) staining. Examine the skin for markers of matura-
tion including thickness, stratification of the epidermal and dermal
papillary layers, and hair follicle density. As shown in Figure 2,
skin samples from 17 dpc pups have thin epidermal and dermal
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Figure 2. Skin histologic changes during gestation. In whole mount, the skin
of 17 dpc CD-1 fetuses appeared more translucent (A) than that of 19 dpc
fetuses (C). H&E-stained sections of dorsal skin from 17 dpc fetuses had
thinner epidermal (E) and dermal papillary (DP) layers and contained fewer
hair follicles (asterisks) than H&E-stained sections of skin from 19 dpc fetuses
(B and D). (Please see the online version for the color figure.)

papillary regions and contain few hair follicles. In contrast, skin
samples from 19 dpc pups have thick, stratified epidermal layers and
thick papillary regions and contain multiple hair follicles.

Lung maturity markers
Lung development proceeds through markedly similar steps in mam-
mals [124, 125]. This process begins with branching morphogenesis,
in which the embryonic tracheal lung bud reiteratively branches to
form large and small airways [126]. Branching morphogenesis is
complete by mid-gestation in humans and mice and is followed by
a period of mesenchymal thinning and epithelial differentiation. Fi-
nally, the lungs become alveolarized, during which alveolar septation
expands the gas exchange structures of the lung [127]. In humans,
this process begins at 36 weeks’ gestation and continues into early
childhood [128, 129]. In mice, alveolarization occurs entirely post-
natally, beginning at postnatal day 4–5 and becoming fully mature
by postnatal day 30. We describe two methods that can be used
to assess the extent of lung mesenchymal thinning and epithelial
differentiation as a marker of fetal maturity in mice [130].

Morphometric assessment of lung maturation
Morphometric assessment of lung airspaces reveals the degree of
mesenchymal thinning that occurs after branching morphogene-
sis is complete and before alveolarization initiates. To evaluate
lung morphology, dissect out fetal lungs, section them, H&E stain
the sections, and view the lung sections at ×40 magnification
(Figure 3A and B). Avoid fields containing large vessels or airways.
Use computer-assisted morphometry (e.g. Image-Pro Plus software;
Media Cybernetics) to count the number of airspaces and measure
airspace diameter and airspace perimeter. Calculate airspace volume
density by dividing the sum of the airspace area by the total area

Figure 3. Lung morphometry as a marker of lung maturity. H&E stained lungs
from 17 and 19 dpc CD-1 mouse fetuses (A, B). Lung morphometry measure-
ments indicated that, compared to 17 dpc lungs, 19 dpc lungs contained more
airspaces (C), had larger airspace volume density (airspace area divided by
total lung area) (D), and had larger airspace diameter (E). However, airspace
perimeter was similar in the two groups (F). n = 6 for both 17 and 19 dpc;
∗P-values, calculated by t-test; error bars represent SEM. (Please see the on-
line version for the color figure.)

(Figure 3C–F). In our experience, the airspace perimeter is the least
reliable measure of lung maturity because airspace shape becomes
more variable as the mesenchyme thins [131].

Protein and mRNA markers of lung epithelial differentiation
Infants born prematurely, especially at <34 weeks’ gestation, have
pulmonary complications due to lung immaturity, and those infants
that survive are at increased risk for long-term adverse pulmonary
outcomes such as asthma, reduced lung function, and chronic lung
disease [2, 5]. These pulmonary deficits are due, in part, to insuffi-
cient lung surfactant, composed of lipids and proteins that are se-
creted by fully differentiated type 2 alveolar epithelial cells. Surfac-
tant reduces surface tension, helps maintain normal lung volumes,
and is essential for normal breathing [132]. The four major pro-
tein components of surfactant are surfactant proteins B and C (SP-B
and SP-C), which interact with phospholipids to improve surfactant
dispersion at the air/liquid interface and prevent alveolar collapse
[130, 133], and surfactant proteins A and D (SP-A and SP-D), which
act as part of the innate immune system by opsonizing bacteria for
clearance by pulmonary macrophages.

In mice, SP-A is expressed in the fetal lung late in gestation,
becoming detectable in the amniotic fluid by 17.0 dpc and maximally
expressed by 19.0 dpc [109]. Fetal SP-A is a particularly interesting
marker of gestational lung maturity because it appears to help initiate
parturition. Thus, detection of SP-A mRNA or protein in fetal lung
or amniotic fluid could be used as a marker for fetal maturity in
mice [109, 134]. SP-B, which is clinically administered to premature
babies to treat surfactant deficiency, can likewise be used as a fetal
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Figure 4. Gene expression as a marker of lung maturation. RNA isolated from pups of the indicated gestational ages was reverse transcribed to produce
cDNA (SuperScript VILO kit; Invitrogen), and multiplex quantitative PCR reactions were performed with a StepOnePlus PCR System (Applied Biosystems) using
the following FAM-labeled TaqMan Gene Expression assays (Applied Biosystems): SP-B Mm00455679 m1, ENac Mm00803386 m1, Aqp5 Mm00437578 m1,
SP-C Mm00488144 m1, and Nkx2.1 Mm00447558 m1. The VIC-labeled housekeeping gene, 18S, was used as an internal control. Triplicate ��CT values were
generated for each sample. mRNA levels relative to dpc 17 mRNA were calculated by using the equation FC = 2−��CT. n = 4 for each timepoint; ∗P-values,
calculated by one-way ANOVA with Dunnett post hoc analysis, denote comparisons between indicated values and 17 dpc values; error bars represent SEM.

lung marker. As shown in Figure 4A, SP-B mRNA increases in the
fetal lung by up to 5-fold between 17 and 19 dpc and by up to 10-
fold at postnatal day 1. SP-C, a transmembrane protein expressed
exclusively in alveolar type 2 cells postnatally, can similarly be used
as a marker of lung maturity (Figure 4B)[135].

Two other proteins that can be used as markers of lung devel-
opment are the water channel Aquaporin 5, which is expressed in
alveolar type 1 cells and is thought to facilitate fluid absorption in the
perinatal lung [136], and the epithelial sodium ion channel (ENaC).
Two of the three ENaC subunits increase sharply in the mouse fetal
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lung at late gestation [137]. As seen in Figure 4C and D, mRNA
expression of ENaC and Aquaporin 5 increase in late gestation and
can be used as markers of fetal lung maturity [135].

In addition to the above markers, panels of 50 or more genes
have been evaluated as markers of fetal lung maturity in mice [130].
However, due to differences in mouse strain, detection methods,
and reagents (primary antibodies, PCR primers), some of these pro-
teins/genes may not be reproducible markers. For example, we found
that NK2 Homeobox 1 (Nkx2.1), an epithelial transcription factor
critical for embryonic lung morphogenesis, was expressed at simi-
lar levels in 17 dpc, 19 dpc, and postnatal day 1 lungs. Therefore,
we recommend that investigators evaluate multiple lung maturation
markers. In addition, absolute levels of each marker are not sufficient
to assess lung maturity and should always be compared to levels in
full-term pups of the appropriate genotype and strain.

Conclusion

Researchers have used several mouse models to test hypotheses re-
garding preterm birth. These include models of genetic, infectious,
noninfectious (sterile) inflammatory, environmental toxins, and en-
docrine etiologies. However, comparing data between studies is chal-
lenging given the lack of uniform criteria for defining preterm birth
and assessing pup maturity. A recent review by Manuel et al. en-
courages investigators to develop better mouse models that are more
consistent with the human etiologies of preterm birth [138]. In this
review, we recommend that our field adopt standardized experimen-
tal and reporting guidelines to define preterm birth and use fetal
developmental markers to distinguish between premature and ma-
ture pups. In addition to the skin and lung markers proposed here, we
welcome other easy-to-use developmental markers. By standardizing
our methods and reporting, mice should become an even more valu-
able model with which to study the important problems of preterm
birth and the resulting neonatal co-morbidities.
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