172 research outputs found

    Novel treatment strategies for chronic kidney disease: insights from the animal kingdom

    Get PDF
    Many of the >2 million animal species that inhabit Earth have developed survival mechanisms that aid in the prevention of obesity, kidney disease, starvation, dehydration and vascular ageing; however, some animals remain susceptible to these complications. Domestic and captive wild felids, for example, show susceptibility to chronic kidney disease (CKD), potentially linked to the high protein intake of these animals. By contrast, naked mole rats are a model of longevity and are protected from extreme environmental conditions through mechanisms that provide resistance to oxidative stress. Biomimetic studies suggest that the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) offers protection in extreme environmental conditions and promotes longevity in the animal kingdom. Similarly, during months of fasting, immobilization and anuria, hibernating bears are protected from muscle wasting, azotaemia, thrombotic complications, organ damage and osteoporosis - features that are often associated with CKD. Improved understanding of the susceptibility and protective mechanisms of these animals and others could provide insights into novel strategies to prevent and treat several human diseases, such as CKD and ageing-associated complications. An integrated collaboration between nephrologists and experts from other fields, such as veterinarians, zoologists, biologists, anthropologists and ecologists, could introduce a novel approach for improving human health and help nephrologists to find novel treatment strategies for CKD

    Klotho is a substrate for α-, β- and γ-secretase

    Get PDF
    AbstractKlotho is an anti-aging protein with different functions of the full-length membrane protein and the secreted hormone-like form. Using overexpression and knock-down approaches as well as embryonic fibroblasts of knock-out mice we present evidence that Klotho is shedded by the α-secretases ADAM10 and 17 as well as by the β-secretase β-APP cleaving enzyme 1. The remaining membrane-bound fragment is a substrate for regulated intramembrane proteolysis by γ-secretase. Our data suggest that therapeutic approaches targeting these proteases should be carefully analyzed for potential side effects on Klotho-mediated physiological processes

    Klotho and the Aging Process

    Get PDF
    The klotho gene was originally identified as a putative age-suppressing gene in mice that extends life span when overexpressed. It induces complex phenotypes resembling human premature aging syndromes when disrupted. The gene was named after a Greek goddess Klotho who spun the thread of life. Since then, various functional aspects of the klotho gene have been investigated, leading to the identification of multiple novel endocrine axes that regulate various metabolic processes and an unexpected link between mineral metabolism and aging. The purposes of this review were to overview recent progress on Klotho research and to discuss a novel aging mechanism

    Phosphate and Klotho

    Get PDF
    Klotho is a putative aging suppressor gene encoding a single-pass transmembrane co-receptor that makes the fibroblast growth factor (FGF) receptor specific for FGF-23. In addition to multiple endocrine organs, Klotho is expressed in kidney distal convoluted tubules and parathyroid cells, mediating the role of FGF-23 in bone–kidney–parathyroid control of phosphate and calcium. Klotho–/– mice display premature aging and chronic kidney disease-associated mineral and bone disorder (CKD-MBD)-like phenotypes mediated by hyperphosphatemia and remediated by phosphate-lowering interventions (diets low in phosphate or vitamin D; knockouts of 1α-hydroxylase, vitamin D receptor, or NaPi cotransporter). CKD can be seen as a state of hyperphosphatemia-induced accelerated aging associated with Klotho deficiency. Humans with CKD experience decreased Klotho expression as early as stage 1 CKD; Klotho continues to decline as CKD progresses, causing FGF-23 resistance and provoking large FGF-23 and parathyroid hormone increases, and hypovitaminosis D. Secreted Klotho protein, formed by extracellular clipping, exerts FGF-23-independent phosphaturic and calcium-conserving effects through its paracrine action on the proximal and distal tubules, respectively. We contend that decreased Klotho expression is the earliest biomarker of CKD and the initiator of CKD-MBD pathophysiology. Maintaining normal phosphate levels with phosphate binders in patients with CKD with declining Klotho expression is expected to reduce mineral and vascular derangements

    Vitamin D receptor agonists increase klotho and osteopontin while decreasing aortic calcification in mice with chronic kidney disease fed a high phosphate diet

    Get PDF
    Vascular calcification is common in chronic kidney disease, where cardiovascular mortality remains the leading cause of death. Patients with kidney disease are often prescribed vitamin D receptor agonists (VDRAs) that confer a survival benefit, but the underlying mechanisms remain unclear. Here we tested two VDRAs in a mouse chronic kidney disease model where dietary phosphate loading induced aortic medial calcification. Mice were given intraperitoneal calcitriol or paricalcitol three times per week for 3 weeks. These treatments were associated with half of the aortic calcification compared to no therapy, and there was no difference between the two agents. In the setting of a high-phosphate diet, serum parathyroid hormone and calcium levels were not significantly altered by treatment. VDRA therapy was associated with increased serum and urine klotho levels, increased phosphaturia, correction of hyperphosphatemia, and lowering of serum fibroblast growth factor-23. There was no effect on elastin remodeling or inflammation; however, the expression of the anticalcification factor, osteopontin, in aortic medial cells was increased. Paricalcitol upregulated osteopontin secretion from mouse vascular smooth muscle cells in culture. Thus, klotho and osteopontin were upregulated by VDRA therapy in chronic kidney disease, independent of changes in serum parathyroid hormone and calcium

    Association between Serum Soluble Klotho Levels and Mortality in Chronic Hemodialysis Patients

    Get PDF
    Klotho is a single-pass transmembrane protein predominantly expressed in the kidney. The extracellular domain of Klotho is subject to ectodomain shedding and is released into the circulation as a soluble form. Soluble Klotho is also generated from alternative splicing of the Klotho gene. In mice, defects in Klotho expression lead to complex phenotypes resembling those observed in dialysis patients. However, the relationship between the level of serum soluble Klotho and overall survival in hemodialysis patients, who exhibit a state of Klotho deficiency, remains to be delineated. Here we prospectively followed a cohort of 63 patients with a mean duration of chronic hemodialysis of 6.7±5.4 years for a median of 65 months. Serum soluble Klotho was detectable in all patients (median 371 pg/mL, interquartile range 309–449). Patients with serum soluble Klotho levels below the lower quartile (<309 pg/mL) had significantly higher cardiovascular and all-cause mortality rates. Furthermore, the higher all-cause mortality persisted even after adjustment for confounders (hazard ratio 4.14, confidence interval 1.29–13.48). We conclude that there may be a threshold for the serum soluble Klotho level associated with a higher risk of mortality

    Improved protein arrays for quantitative systems analysis of the dynamics of signaling pathway interactions

    Get PDF
    An improved version of quantitative protein array platform utilizing linear Quantum dot signaling for systematically measuring protein levels and phosphorylation states is presented. The signals are amplified linearly by a confocal laser Quantum dot scanner resulting in ~1000-fold more sensitivity than traditional Western blots, but are not linear by the enzyme-based amplification. Software is developed to facilitate the quantitative readouts of signaling network activities. Kinetics of EGFRvIII mutant signaling was analyzed to quantify cross-talks between EGFR and other signaling pathways

    Modulation of Klotho expression in injured muscle perturbs Wnt signalling and influences the rate of muscle growth

    Get PDF
    Skeletal muscle injuries activate a complex programme of myogenesis that can restore normal muscle structure. We tested whether modulating the expression of klotho influenced the response of mouse muscles to acute injury. Our findings show that klotho expression in muscle declines at 3 days post‐injury. That reduction in klotho expression coincided with elevated expression of targets of Wnt signalling (Ccnd1; Myc) and increased MyoD+ muscle cell numbers, reflecting the onset of myogenic cell differentiation. klotho expression subsequently increased at 7 days post‐injury with elevated expression occurring primarily in inflammatory lesions, which was accompanied by reduced expression of Wnt target genes (Ccnd1: 91%; Myc: 96%). Introduction of a klotho transgene maintained high levels of klotho expression over the course of muscle repair and attenuated the increases in Ccnd1 and Myc expression that occurred at 3 days post‐injury. Correspondingly, transgene expression reduced Wnt signalling in Pax7+ cells, reflected by reductions in Pax7+ cells expressing active β‐catenin, and reduced the numbers of MyoD+ cells at 3 days post‐injury. At 21 days post‐injury, muscles in klotho transgenic mice showed increased Pax7+ and decreased myogenin+ cell densities and large increases in myofibre size. Likewise, treating myogenic cells in vitro with Klotho reduced Myod expression but did not affect Pax7 expression. Muscle inflammation was only slightly modulated by increased klotho expression, initially reducing the expression of M2‐biased macrophage markers Cd163 and Cd206 at 3 days post‐injury and later increasing the expression of pan‐macrophage marker F480 and Cd68 at 21 days post‐injury. Collectively, our study shows that Klotho modulates myogenesis and that increased expression accelerates muscle growth after injury
    corecore