477 research outputs found
A simple prescription for simulating and characterizing gravitational arcs
Simple models of gravitational arcs are crucial to simulate large samples of
these objects with full control of the input parameters. These models also
provide crude and automated estimates of the shape and structure of the arcs,
which are necessary when trying to detect and characterize these objects on
massive wide area imaging surveys. We here present and explore the ArcEllipse,
a simple prescription to create objects with shape similar to gravitational
arcs. We also present PaintArcs, which is a code that couples this geometrical
form with a brightness distribution and adds the resulting object to images.
Finally, we introduce ArcFitting, which is a tool that fits ArcEllipses to
images of real gravitational arcs. We validate this fitting technique using
simulated arcs and apply it to CFHTLS and HST images of tangential arcs around
clusters of galaxies. Our simple ArcEllipse model for the arc, associated to a
S\'ersic profile for the source, recovers the total signal in real images
typically within 10%-30%. The ArcEllipse+S\'ersic models also automatically
recover visual estimates of length-to-width ratios of real arcs. Residual maps
between data and model images reveal the incidence of arc substructure. They
may thus be used as a diagnostic for arcs formed by the merging of multiple
images. The incidence of these substructures is the main factor preventing
ArcEllipse models from accurately describing real lensed systems.Comment: 12 pages, 11 figures, accepted for publication in A&
The SOAR Gravitational Arc Survey - I: Survey overview and photometric catalogs
We present the first results of the SOAR (Southern Astrophysical Research)
Gravitational Arc Survey (SOGRAS). The survey imaged 47 clusters in two
redshift intervals centered at and , targeting the richest
clusters in each interval. Images were obtained in the , and
bands using the SOAR Optical Imager (SOI), with a median seeing of 0.83, 0.76
and 0.71 arcsec, respectively, in these filters. Most of the survey clusters
are located within the Sloan Digital Sky Survey (SDSS) Stripe 82 region and all
of them are in the SDSS footprint. Photometric calibration was therefore
performed using SDSS stars located in our SOI fields. We reached for galaxies
in all fields the detection limits of , and for a signal-to-noise ratio (S/N) = 3. As a by-product of the image
processing, we generated a source catalogue with 19760 entries, the vast
majority of which are galaxies, where we list their positions, magnitudes and
shape parameters. We compared our galaxy shape measurements to those of local
galaxies and concluded that they were not strongly affected by seeing. From the
catalogue data, we are able to identify a red sequence of galaxies in most
clusters in the lower range. We found 16 gravitational arc candidates
around 8 clusters in our sample. They tend to be bluer than the central
galaxies in the lensing cluster. A preliminary analysis indicates that of the clusters have arcs around them, with a possible indication of a
larger efficiency associated to the high- systems when compared to the
low- ones. Deeper follow-up images with Gemini strengthen the case for the
strong lensing nature of the candidates found in this survey.Comment: 17 pages, 11 figures (most of them multi-panel) MNRAS (2013
On Local Approximations to the Nonlinear Evolution of Large-Scale Structure
We present a comparative analysis of several methods, known as local
Lagrangian approximations, which are aimed to the description of the nonlinear
evolution of large-scale structure. We have investigated various aspects of
these approximations, such as the evolution of a homogeneous ellipsoid,
collapse time as a function of initial conditions, and asymptotic behavior. As
one of the common features of the local approximations, we found that the
calculated collapse time decreases asymptotically with the inverse of the
initial shear. Using these approximations, we have computed the cosmological
mass function, finding reasonable agreement with N-body simulations and the
Press-Schechter formula.Comment: revised version with color figures, minor changes, accepted for
publication in the Astrophysical Journal, 30 pages, 13 figure
Opportunities for improving pLDH-based malaria diagnostic tests
<p>Abstract</p> <p>Background</p> <p>Monoclonal antibodies to <it>Plasmodium </it>lactate dehydrogenase (pLDH) have been previously used to format immunochromatographic tests for the diagnosis of malaria. Using pLDH as an antigen has several advantages as a sensitive measure of the presence of parasites within patient blood samples. However, variable results in terms of specificity and sensitivity among different commercially available diagnostic kits have been reported and it has not been clear from these studies whether the performance of an individual test is due simply to how it is engineered or whether it is due to the biochemical nature of the pLDH-antibody reaction itself.</p> <p>Methods</p> <p>A series of systematic studies to determine how various pLDH monoclonal antibodies work in combination was undertaken. Different combinations of anti-pLDH monoclonal antibodies were used in a rapid-test immunochromatographic assay format to determine parameters of sensitivity and specificity with regard to individual <it>Plasmodium </it>species.</p> <p>Results</p> <p>Dramatic differences were found in both species specificity and overall sensitivity depending on which antibody is used on the immunochromatographic strip and which is used on the colorimetric colloidal-gold used for visual detection.</p> <p>Discussion</p> <p>The results demonstrate the feasibility of different test formats for the detection and speciation of malarial infections. In addition, the data will enable the development of a universal rapid test algorithm that may potentially provide a cost-effective strategy to diagnose and manage patients in a wide range of clinical settings.</p> <p>Conclusion</p> <p>These data emphasize that using different anti-pLDH antibody combinations offers a tractable way to optimize immunochromatographic pLDH tests.</p
A mathematical analysis of the evolution of perturbations in a modified Chaplygin gas model
One approach in modern cosmology consists in supposing that dark matter and
dark energy are different manifestations of a single `quartessential' fluid.
Following such idea, this work presents a study of the evolution of
perturbations of density in a flat cosmological model with a modified Chaplygin
gas acting as a single component. Our goal is to obtain properties of the model
which can be used to distinguish it from another cosmological models which have
the same solutions for the general evolution of the scale factor of the
universe, without the construction of the power spectrum. Our analytical
results, which alone can be used to uniquely characterize the specific model
studied in our work, show that the evolution of the density contrast can be
seen, at least in one particular case, as composed by a spheroidal wave
function. We also present a numerical analysis which clearly indicates as one
interesting feature of the model the appearence of peaks in the evolution of
the density constrast.Comment: 21 pages, accepted for publication in General Relativity and
Gravitatio
Results of the engineering run of the coherent neutrino nucleus interaction experiment (CONNIE)
The CONNIE detector prototype is operating at a distance of 30 m from the core of a 3.8 GWth nuclear reactor with the goal of establishing Charge-Coupled Devices (CCD) as a new technology for the detection of coherent elastic neutrino-nucleus scattering. We report on the results of the engineering run with an active mass of 4 g of silicon. The CCD array is described, and the performance observed during the first year is discussed. A compact passive shield was deployed around the detector, producing an order of magnitude reduction in the background rate. The remaining background observed during the run was stable, and dominated by internal contamination in the detector packaging materials. The in-situ calibration of the detector using X-ray lines from fluorescence demonstrates good stability of the readout system. The event rates with the reactor ON and OFF are compared, and no excess is observed coming from nuclear fission at the power plant. The upper limit for the neutrino event rate is set two orders of magnitude above the expectations for the standard model. The results demonstrate the cryogenic CCD-based detector can be remotely operated at the reactor site with stable noise below2 e RMS and stable background rates. The success of the engineering test provides a clear path for the upgraded 100 g detector to be deployed during 2016.Fil: Aguilar Arevalo, A.. Universidad Nacional Autónoma de México; MéxicoFil: Bertou, Xavier Pierre Louis. Comisión Nacional de Energía Atómica; Argentina. Comisión Nacional de Energía Atómica. Fundación José A. Balseiro; ArgentinaFil: Bonifazi, C.. Universidade Federal do Rio de Janeiro; BrasilFil: Butner, M.. Fermi National Accelerator Laboratory; Estados UnidosFil: Cancelo, G.. Fermi National Accelerator Laboratory; Estados UnidosFil: Castañeda Vazquez, A.. Universidad Nacional Autónoma de México; MéxicoFil: Cervantes Vergara, B.. Universidad Nacional Autónoma de México; MéxicoFil: Chavez, C. R.. Universidad Nacional de Asunción; ParaguayFil: Da Motta, H.. Centro Brasileiro de Pesquisas Físicas; BrasilFil: D'Olivo, J. C.. Universidad Nacional Autónoma de México; MéxicoFil: Dos Anjos, J.. Centro Brasileiro de Pesquisas Físicas; BrasilFil: Estrada, J.. Fermi National Accelerator Laboratory; Estados UnidosFil: Fernández Moroni, Guillermo. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto ; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ford, R.. Fermi National Accelerator Laboratory; Estados UnidosFil: Foguel, A.. Centro Brasileiro de Pesquisas Físicas; Brasil. Universidade Federal do Rio de Janeiro; BrasilFil: Hernandez Torres, K. P.. Universidad Nacional Autónoma de México; MéxicoFil: Izraelevitch, F.. Fermi National Accelerator Laboratory; Estados UnidosFil: Kavner, A.. University of Michigan; Estados UnidosFil: Kilminster, B.. Universitat Zurich; SuizaFil: Kuk, K.. Fermi National Accelerator Laboratory; Estados UnidosFil: Lima Jr, H. P.. Centro Brasileiro de Pesquisas Físicas; BrasilFil: Makler, M.. Centro Brasileiro de Pesquisas Físicas; BrasilFil: Molina, J.. Universidad Nacional de Asunción; ParaguayFil: Moreno Granados, G.. Universidad Nacional Autónoma de México; MéxicoFil: Moro, Juan Manuel. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Paolini, Eduardo Emilio. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto ; ArgentinaFil: Sofo Haro, Miguel Francisco. Comision Nacional de Energia Atomica. Gerencia D/area de Energia Nuclear; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Tiffenberg, Javier Sebastian. Fermi National Accelerator Laboratory; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Trillaud, F.. Universidad Nacional Autónoma de México; MéxicoFil: Wagner, S.. Centro Brasileiro de Pesquisas Físicas; Brasil. Pontificia Universidade Católica do Rio Grande do Sul; Brasi
The tidal tails of NGC 2298
We present an implementation of the matched-filter technique to detect tidal
tails of globular clusters. The method was tested using SDSS data for the
globular cluster Palomar 5 revealing its well known tidal tails. We also ran a
simulation of a globular cluster with a tidal tail where we successfully
recover the tails for a cluster at the same position and with the same
characteristics of NGC 2298. Based on the simulation we estimate that the
matched-filter increases the contrast of the tail relative to the background of
stars by a factor of 2.5 for the case of NGC 2298. We also present the
photometry of the globular cluster NGC 2298 using the MOSAIC2 camera installed
on the CTIO 4m telescope. The photometry covers ~ 3deg2 reaching V ~ 23. A fit
of a King profile to the radial density profile of NGC 2298 shows that this
cluster has a tidal radius of 15.91' \pm 1.07' which is twice as in the
literature. The application of the matched-filter to NGC 2298 reveals several
extra-tidal structures, including a leading and trailing tail. We also find
that NGC 2298 has extra-tidal structures stretching towards and against the
Galactic disk, suggesting strong tidal interaction. Finally, we assess how the
matched-filter performs when applied to a globular cluster with and without
mass segregation taken into account. We find that disregarding the effects of
mass segregation may significantly reduce the detection limit of the
matched-filter.Comment: 11 pages, 9 figures, 1 table. Accepted for publication on MNRAS main
journa
Large scale structure and the generalised Chaplygin gas as dark energy
The growth of large scale structure is studied in a universe containing both
cold dark matter (CDM) and generalized Chaplygin gas (GCg). GCg is assumed to
contribute only to the background evolution of the universe while the CDM
component collapses and forms structures. We present some new analytical as
well as numerical results for linear and non-linear growth in such model. The
model passes the standard cosmological distance test without the need of a
cosmological constant (LCDM). But we find that the scenario is severely
constrained by current observations of large scale structure. Any small
deviations of the GCg parameters away from the standard Lambda dominated
cosmology (LCDM) produces substantial suppression for the growth of structures.Comment: 6 pages, matches version accepted for publication in Phys.Rev.D (in
press
- …