64 research outputs found

    POLYFLUOROALKYL-2-(HET)ARYLHYDRAZONO-1,3-DICARBONYL COMPOUNDS IN INTRAMOLECULAR CYCLIZATION REACTIONS

    Full text link
    This work was financially supported by the Program UB RAS (Grant number 18-3-3-13)

    Molecular polymorphism of human enzymes as the basis of individual sensitivity to drugs. Supercomputer-assisted modeling as a tool for analysis of structural changes and enzymatic activity of proteins

    Get PDF
    © 2016, Springer Science+Business Media New York.The nature of individual sensitivity to drugs associated with molecular polymorphism of human enzymes is discussed. The influence of molecular polymorphism on the activity of key human esterases, in particular, cholinesterases and carboxylesterase, responsible for hydrolytic metabolism of ester-containing drugs, is analyzed. A method was developed, which involves supercomputer-assisted modeling as a tool for assessment of molecular mechanism of the impact of point mutations on the catalytic activity of enzymes. This work is a part of a study aimed at elaboration of the concept and methods of personalized medicine

    Improved Electrochemical Analysis of Neuropathy Target Esterase Activity by a Tyrosinase Carbon Paste Electrode Modified by 1-Methoxyphenazine Methosulfate

    Full text link
    A graphite-paste tyrosinase biosensor was improved by adding 1-methoxyphenazine methosulfate as a mediator. Mediator modification enhanced sensitivity to phenol 4-fold and long-term stability 3-fold. Phenol could be detected at 25 n M (S/N=2) using an Ag/AgCl reference electrode. The biosensor was used to measure the activity of a toxicologically significant enzyme, neuropathy target esterase (NTE), which yields phenol by hydrolysis of the substrate, phenyl valerate. Using the new biosensor, blood and brain NTE inhibition by organophosphorus (OP) compounds with different neuropathic potencies were well correlated ( r =0.990, n =7), supporting the use of blood NTE as a biochemical marker of exposure to neuropathic OP compounds.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42368/1/10529_2005_Article_0020.pd

    Derivatives of 9-phosphorylated acridine as butyrylcholinesterase inhibitors with antioxidant activity and the ability to inhibit β-amyloid self-aggregation: potential therapeutic agents for Alzheimer’s disease

    Get PDF
    We investigated the inhibitory activities of novel 9-phosphoryl-9,10-dihydroacridines and 9-phosphorylacridines against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and carboxylesterase (CES). We also studied the abilities of the new compounds to interfere with the self-aggregation of β-amyloid (Aβ42) in the thioflavin test as well as their antioxidant activities in the ABTS and FRAP assays. We used molecular docking, molecular dynamics simulations, and quantum-chemical calculations to explain experimental results. All new compounds weakly inhibited AChE and off-target CES. Dihydroacridines with aryl substituents in the phosphoryl moiety inhibited BChE; the most active were the dibenzyloxy derivative 1d and its diphenethyl bioisostere 1e (IC50 = 2.90 ± 0.23 µM and 3.22 ± 0.25 µM, respectively). Only one acridine, 2d, an analog of dihydroacridine, 1d, was an effective BChE inhibitor (IC50 = 6.90 ± 0.55 μM), consistent with docking results. Dihydroacridines inhibited Aβ42 self-aggregation; 1d and 1e were the most active (58.9% ± 4.7% and 46.9% ± 4.2%, respectively). All dihydroacridines 1 demonstrated high ABTS•+-scavenging and iron-reducing activities comparable to Trolox, but acridines 2 were almost inactive. Observed features were well explained by quantum-chemical calculations. ADMET parameters calculated for all compounds predicted favorable intestinal absorption, good blood–brain barrier permeability, and low cardiac toxicity. Overall, the best results were obtained for two dihydroacridine derivatives 1d and 1e with dibenzyloxy and diphenethyl substituents in the phosphoryl moiety. These compounds displayed high inhibition of BChE activity and Aβ42 self-aggregation, high antioxidant activity, and favorable predicted ADMET profiles. Therefore, we consider 1d and 1e as lead compounds for further in-depth studies as potential anti-AD preparations

    Non-ionic Thermoresponsive Polymers in Water

    Full text link

    Molecular polymorphism of human enzymes as the basis of individual sensitivity to drugs. Supercomputer-assisted modeling as a tool for analysis of structural changes and enzymatic activity of proteins

    Get PDF
    © 2016, Springer Science+Business Media New York.The nature of individual sensitivity to drugs associated with molecular polymorphism of human enzymes is discussed. The influence of molecular polymorphism on the activity of key human esterases, in particular, cholinesterases and carboxylesterase, responsible for hydrolytic metabolism of ester-containing drugs, is analyzed. A method was developed, which involves supercomputer-assisted modeling as a tool for assessment of molecular mechanism of the impact of point mutations on the catalytic activity of enzymes. This work is a part of a study aimed at elaboration of the concept and methods of personalized medicine
    corecore