302 research outputs found

    Recoil polarization and beam-recoil double polarization measurement of \eta electroproduction on the proton in the region of the S_{11}(1535) resonance

    Get PDF
    The beam-recoil double polarization P_{x'}^h and P_{z'}^h and the recoil polarization P_{y'} were measured for the first time for the p(\vec{e},e'\vec{p})\eta reaction at a four-momentum transfer of Q^2=0.1 GeV^2/c^2 and a center of mass production angle of \theta = 120^\circ at MAMI C. With a center of mass energy range of 1500 MeV < W < 1550 MeV the region of the S_{11}(1535) and D_{13}(1520) resonance was covered. The results are discussed in the framework of a phenomenological isobar model (Eta-MAID). While P_{x'}^h and P_{z'}^h are in good agreement with the model, P_{y'} shows a significant deviation, consistent with existing photoproduction data on the polarized-target asymmetry.Comment: 4 pages, 1 figur

    The electric and magnetic form factors of the proton

    Get PDF
    The paper describes a precise measurement of electron scattering off the proton at momentum transfers of 0.003Q210.003 \lesssim Q^2 \lesssim 1\ GeV2^2. The average point-to-point error of the cross sections in this experiment is \sim 0.37%. These data are used for a coherent new analysis together with all world data of unpolarized and polarized electron scattering from the very smallest to the highest momentum transfers so far measured. The extracted electric and magnetic form factors provide new insight into their exact shape, deviating from the classical dipole form, and of structure on top of this gross shape. The data reaching very low Q2Q^2 values are used for a new determination of the electric and magnetic radii. An empirical determination of the Two-Photon-Exchange (TPE) correction is presented. The implications of this correction on the radii and the question of a directly visible signal of the pion cloud are addressed.Comment: 38 pages, 20 figures. Updated data files. PRC versio

    Reply to Comment on "High-Precision Determination of the Electric and Magnetic Form Factors of the Proton"

    Get PDF
    In arXiv:1108.3058v1 [nucl-ex], Arrington criticizes the Coulomb corrections we applied in the analysis of high precision form factor data (see Phys.Rev.Lett.105:242001, 2010, arXiv:1007.5076v3 [nucl-ex]). We show, by comparing different calculations cited in the Comment, that the criticism of the Comment neglects the large uncertainty of "more modern" TPE corrections. This uncertainty has also been seen in recent polarized measurements. We rerun our analysis using one of these calculations. The results show that the Comment exaggerates the quantitative effect at small Q^2.Comment: 1 page, 2 figure, To appear as a Reply Comment in Physical Review Letter

    High-precision determination of the electric and magnetic form factors of the proton

    Get PDF
    New precise results of a measurement of the elastic electron-proton scattering cross section performed at the Mainz Microtron MAMI are presented. About 1400 cross sections were measured with negative four-momentum transfers squared up to Q^2=1 (GeV/c)^2 with statistical errors below 0.2%. The electric and magnetic form factors of the proton were extracted by fits of a large variety of form factor models directly to the cross sections. The form factors show some features at the scale of the pion cloud. The charge and magnetic radii are determined to be r_E=0.879(5)(stat.)(4)(syst.)(2)(model)(4)(group) fm and r_M=0.777(13)(stat.)(9)(syst.)(5)(model)(2)(group) fm.Comment: 5 pages, 2 figures, published in Phys. Rev. Lett. v3: added references, updated text, color figure

    Particle tracking in kaon electroproduction with cathode-charge sampling in multi-wire proportional chambers

    Full text link
    Wire chambers are routinely operated as tracking detectors in magnetic spectrometers at high-intensity continuous electron beams. Especially in experiments studying reactions with small cross-sections the reaction yield is limited by the background rate in the chambers. One way to determine the track of a charged particle through a multi-wire proportional chamber (MWPC) is the measurement of the charge distribution induced on its cathodes. In practical applications of this read-out method, the algorithm to relate the measured charge distribution to the avalanche position is an important factor for the achievable position resolution and for the track reconstruction efficiency. An algorithm was developed for operating two large-sized MWPCs in a strong background environment with multiple-particle tracks. Resulting efficiencies were determined as a function of the electron beam current and on the signal amplitudes. Because of the different energy-losses of pions, kaons, and protons in the momentum range of the spectrometer the efficiencies depend also on the particle species

    Measurements of the \gamma * p --> \Delta(1232) reaction at low Q2

    Full text link
    We report new p(e,ep)π(\vec{e},e^\prime p)\pi^\circ measurements in the Δ+(1232)\Delta^{+}(1232) resonance at the low momentum transfer region utilizing the magnetic spectrometers of the A1 Collaboration at MAMI. The mesonic cloud dynamics are predicted to be dominant and appreciably changing in this region while the momentum transfer is sufficiently low to be able to test chiral effective calculations. The results disagree with predictions of constituent quark models and are in reasonable agreement with dynamical calculations with pion cloud effects, chiral effective field theory and lattice calculations. The reported measurements suggest that improvement is required to the theoretical calculations and provide valuable input that will allow their refinements

    Beam-Normal Single Spin Asymmetry in Elastic Electron Scattering off 28^{28}Si and 90^{90}Zr

    Full text link
    We report on a new measurement of the beam-normal single spin asymmetry AnA_{\mathrm{n}} in the elastic scattering of 570 MeV transversely polarized electrons off 28^{28}Si and 90^{90}Zr at Q2=0.04GeV2/c2Q^{2}=0.04\, \mathrm{GeV}^2/c^2. The studied kinematics allow for a comprehensive comparison with former results on 12^{12}C. No significant mass dependence of the beam-normal single spin asymmetry is observed in the mass regime from 12^{12}C to 90^{90}Zr.Comment: Submitted for publication to Physics Letters

    A Large-Scale FPGA-Based Trigger and Dead-Time Free DAQ System for the Kaos Spectrometer at MAMI

    Full text link
    The Kaos spectrometer is maintained by the A1 collaboration at the Mainz Microtron MAMI with a focus on the study of (e,e'K^+) coincidence reactions. For its electron-arm two vertical planes of fiber arrays, each comprising approximately 10 000 fibers, are operated close to zero degree scattering angle and in close proximity to the electron beam. A nearly dead-time free DAQ system to acquire timing and tracking information has been installed for this spectrometer arm. The signals of 144 multi-anode photomultipliers are collected by 96-channel front-end boards, digitized by double-threshold discriminators and the signal time is picked up by state-of-the-art F1 time-to-digital converter chips. In order to minimize background rates a sophisticated trigger logic was implemented in newly developed Vuprom modules. The trigger performs noise suppression, signal cluster finding, particle tracking, and coincidence timing, and can be expanded for kinematical matching (e'K^+) coincidences. The full system was designed to process more than 4 000 read-out channels and to cope with the high electron flux in the spectrometer and the high count rate requirement of the detectors. It was successfully in-beam tested at MAMI in 2009.Comment: Contributed to 17th IEEE Real Time Conference (RT10), Lisbon, 24-28 May 201

    Design, Construction, Operation and Performance of a Hadron Blind Detector for the PHENIX Experiment

    Full text link
    A Hadron Blind Detector (HBD) has been developed, constructed and successfully operated within the PHENIX detector at RHIC. The HBD is a Cherenkov detector operated with pure CF4. It has a 50 cm long radiator directly coupled in a window- less configuration to a readout element consisting of a triple GEM stack, with a CsI photocathode evaporated on the top surface of the top GEM and pad readout at the bottom of the stack. This paper gives a comprehensive account of the construction, operation and in-beam performance of the detector.Comment: 51 pages, 39 Figures, submitted to Nuclear Instruments and Method
    corecore