10 research outputs found

    Heliocentric Effects of the DART Mission on the (65803) Didymos Binary Asteroid System

    Get PDF
    The Double Asteroid Redirect Test (DART) is NASA’s first kinetic impact–based asteroid deflection mission. The DART spacecraft will act as a projectile during a hypervelocity impact on Dimorphos, the secondary asteroid in the (65803) Didymos binary system, and alter its mutual orbital period. The initial momentum transfer between the DART spacecraft and Dimorphos is enhanced by the ejecta flung off the surface of Dimorphos. This exchange is characterized within the system by the momentum enhancement parameter, β, and on a heliocentric level by its counterpart, βe. The relationship between β and the physical characteristics of Dimorphos is discussed here. A nominal set of Dimorphos physical parameters from the design reference asteroid and impact circumstances from the design reference mission are used to initialize the ejecta particles for dynamical propagation. The results of this propagation are translated into a gradual momentum transfer onto the Didymos system barycenter. A high-quality solar system propagator is then used to produce precise estimates of the post-DART encounters between Didymos and Earth by generating updated close approach maps. Results show that even for an unexpectedly high βe, a collision between the Didymos system and Earth is practically excluded in the foreseeable future. A small but significant difference is found in modeling the overall momentum transfer when individual ejecta particles escape the Didymos system, as opposed to imparting the ejecta momentum as a single impulse at impact. This difference has implications for future asteroid deflection campaigns, especially when it is necessary to steer asteroids away from gravitational keyholes

    After DART: Using the First Full-scale Test of a Kinetic Impactor to Inform a Future Planetary Defense Mission

    Get PDF
    NASA’s Double Asteroid Redirection Test (DART) is the first full-scale test of an asteroid deflection technology. Results from the hypervelocity kinetic impact and Earth-based observations, coupled with LICIACube and the later Hera mission, will result in measurement of the momentum transfer efficiency accurate to ∼10% and characterization of the Didymos binary system. But DART is a single experiment; how could these results be used in a future planetary defense necessity involving a different asteroid? We examine what aspects of Dimorphos’s response to kinetic impact will be constrained by DART results; how these constraints will help refine knowledge of the physical properties of asteroidal materials and predictive power of impact simulations; what information about a potential Earth impactor could be acquired before a deflection effort; and how design of a deflection mission should be informed by this understanding. We generalize the momentum enhancement factor β, showing that a particular direction-specific β will be directly determined by the DART results, and that a related direction-specific β is a figure of merit for a kinetic impact mission. The DART β determination constrains the ejecta momentum vector, which, with hydrodynamic simulations, constrains the physical properties of Dimorphos’s near-surface. In a hypothetical planetary defense exigency, extrapolating these constraints to a newly discovered asteroid will require Earth-based observations and benefit from in situ reconnaissance. We show representative predictions for momentum transfer based on different levels of reconnaissance and discuss strategic targeting to optimize the deflection and reduce the risk of a counterproductive deflection in the wrong direction

    After DART: Using the first full-scale test of a kinetic impactor to inform a future planetary defense mission

    Get PDF
    NASA's Double Asteroid Redirection Test (DART) is the first full-scale test of an asteroid deflection technology. Results from the hypervelocity kinetic impact and Earth-based observations, coupled with LICIACube and the later Hera mission, will result in measurement of the momentum transfer efficiency accurate to ~10% and characterization of the Didymos binary system. But DART is a single experiment; how could these results be used in a future planetary defense necessity involving a different asteroid? We examine what aspects of Dimorphos's response to kinetic impact will be constrained by DART results; how these constraints will help refine knowledge of the physical properties of asteroidal materials and predictive power of impact simulations; what information about a potential Earth impactor could be acquired before a deflection effort; and how design of a deflection mission should be informed by this understanding. We generalize the momentum enhancement factor β\beta, showing that a particular direction-specific β\beta will be directly determined by the DART results, and that a related direction-specific β\beta is a figure of merit for a kinetic impact mission. The DART β\beta determination constrains the ejecta momentum vector, which, with hydrodynamic simulations, constrains the physical properties of Dimorphos's near-surface. In a hypothetical planetary defense exigency, extrapolating these constraints to a newly discovered asteroid will require Earth-based observations and benefit from in-situ reconnaissance. We show representative predictions for momentum transfer based on different levels of reconnaissance and discuss strategic targeting to optimize the deflection and reduce the risk of a counterproductive deflection in the wrong direction

    Achievement of the planetary defense investigations of the Double Asteroid Redirection Test (DART) mission

    Get PDF
    NASA's Double Asteroid Redirection Test (DART) mission was the first to demonstrate asteroid deflection, and the mission's Level 1 requirements guided its planetary defense investigations. Here, we summarize DART's achievement of those requirements. On 2022 September 26, the DART spacecraft impacted Dimorphos, the secondary member of the Didymos near-Earth asteroid binary system, demonstrating an autonomously navigated kinetic impact into an asteroid with limited prior knowledge for planetary defense. Months of subsequent Earth-based observations showed that the binary orbital period was changed by –33.24 minutes, with two independent analysis methods each reporting a 1σ uncertainty of 1.4 s. Dynamical models determined that the momentum enhancement factor, β, resulting from DART's kinetic impact test is between 2.4 and 4.9, depending on the mass of Dimorphos, which remains the largest source of uncertainty. Over five dozen telescopes across the globe and in space, along with the Light Italian CubeSat for Imaging of Asteroids, have contributed to DART's investigations. These combined investigations have addressed topics related to the ejecta, dynamics, impact event, and properties of both asteroids in the binary system. A year following DART's successful impact into Dimorphos, the mission has achieved its planetary defense requirements, although work to further understand DART's kinetic impact test and the Didymos system will continue. In particular, ESA's Hera mission is planned to perform extensive measurements in 2027 during its rendezvous with the Didymos–Dimorphos system, building on DART to advance our knowledge and continue the ongoing international collaboration for planetary defense

    Measurability of the Heliocentric Momentum Enhancement from a Kinetic Impact: The Double Asteroid Redirection Test (DART) Mission

    No full text
    The NASA Double Asteroid Redirection Test (DART) has demonstrated the capability of successfully conducting kinetic impact-based asteroid deflection missions. The changes in the Didymos–Dimorphos mutual orbit as a result of the DART impact have already been measured. To fully assess the heliocentric outcome of deflection missions, the heliocentric momentum enhancement parameter, β _⊙ , needs to be determined and disentangled from other nongravitational phenomena such as the Yarkovsky effect. Here we explore the measurability of β _⊙ resulting from DART, which we estimate simultaneously with nongravitational accelerations using a least-squares filter. Results show that successful stellar occultation measurements of the Didymos system in the second half of 2024 in addition to the ones in the 2022–2023 campaigns can achieve a statistically significant estimate of β _⊙ , with an uncertainty slightly above 20% for an assumed β _⊙ = 3. Adding additional occultation measurements and pseudorange measurements from the Hera spacecraft operations at Didymos starting in 2027 decreases this relative uncertainty to under 6%. We find that pre-impact occultation observations combined with post-impact occultations would have yielded substantially higher signal-to-noise ratios on the heliocentric deflection. Additionally, pre-impact occultations would also have enabled a statistically significant β _⊙ estimate using only one additional occultation in 2023 September. Therefore, we conclude that future asteroid deflection missions would greatly benefit from both pre- and post-deflection occultation measurements to help assess the resulting orbital changes

    Predictions for the Dynamical States of the Didymos System before and after the Planned DART Impact

    Get PDF
    NASA's Double Asteroid Redirection Test (DART) spacecraft is planned to impact the natural satellite of (65803) Didymos, Dimorphos, around 23:14 UTC on 26 September 2022, causing a reduction in its orbital period that will be measurable with ground-based observations. This test of kinetic impactor technology will provide the first estimate of the momentum transfer enhancement factor β\beta at a realistic scale, wherein ejecta from the impact provides an additional deflection to the target. Earth-based observations, the LICIACube spacecraft (to be detached from DART prior to impact), and ESA's follow-up Hera mission to launch in 2024, will provide additional characterization of the deflection test. Together Hera and DART comprise the Asteroid Impact and Deflection Assessment (AIDA) cooperation between NASA and ESA. Here the predicted dynamical states of the binary system upon arrival and after impact are presented. The assumed dynamically relaxed state of the system will be excited by the impact, leading to an increase in eccentricity and slight tilt of the orbit together with enhanced libration of Dimorphos with amplitude dependent on the currently poorly known target shape. Free rotation around the moon's long axis may also be triggered and the orbital period will experience variations from seconds to minutes over timescales of days to months. Shape change of either body due to cratering or mass wasting triggered by crater formation and ejecta may affect β\beta but can be constrained through additional measurements. Both BYORP and gravity tides may cause measurable orbital changes on the timescale of Hera's rendezvous

    After DART: Using the First Full-scale Test of a Kinetic Impactor to Inform a Future Planetary Defense Mission

    Get PDF
    NASA’s Double Asteroid Redirection Test (DART) is the first full-scale test of an asteroid deflection technology. Results from the hypervelocity kinetic impact and Earth-based observations, coupled with LICIACube and the later Hera mission, will result in measurement of the momentum transfer efficiency accurate to ∼10% and characterization of the Didymos binary system. But DART is a single experiment; how could these results be used in a future planetary defense necessity involving a different asteroid? We examine what spects of Dimorphos’s response to kinetic impact will be constrained by DART results; how these constraints will help refine knowledge of the physical properties of asteroidal materials and predictive power of impact simulations; what information about a potential Earth impactor could be acquired before a deflection effort; and how design of a deflection mission should be informed by this understanding. We generalize the momentum enhancement factor β, showing that a particular direction-specific β will be directly determined by the DART results, and that a related directionspecific β is a figure of merit for a kinetic impact mission. The DART β determination constrains the ejecta momentum vector, which, with hydrodynamic simulations, constrains the physical properties of Dimorphos’s nearsurface. In a hypothetical planetary defense exigency, extrapolating these constraints to a newly discovered asteroid will require Earth-based observations and benefit from in situ reconnaissance. We show representative predictions for momentum transfer based on different levels of reconnaissance and discuss strategic targeting to optimize the deflection and reduce the risk of a counterproductive deflection in the wrong direction

    Ejecta from the DART-produced active asteroid Dimorphos.

    Get PDF
    Some active asteroids have been proposed to be the result of impact events1. Because active asteroids are generally discovered serendipitously only after their tail formation, the process of the impact ejecta evolving into a tail has never been directly observed. NASA's Double Asteroid Redirection Test (DART) mission2, apart from having successfully changed the orbital period of Dimorphos3, demonstrated the activation process of an asteroid from an impact under precisely known impact conditions. Here we report the observations of the DART impact ejecta with the Hubble Space Telescope (HST) from impact time T+15 minutes to T+18.5 days at spatial resolutions of ~2.1 km per pixel. Our observations reveal a complex evolution of ejecta, which is first dominated by the gravitational interaction between the Didymos binary system and the ejected dust and later by solar radiation pressure. The lowest-speed ejecta dispersed via a sustained tail that displayed a consistent morphology with previously observed asteroid tails thought to be produced by impact4,5. The ejecta evolution following DART's controlled impact experiment thus provides a framework for understanding the fundamental mechanisms acting on asteroids disrupted by natural impact1,6

    Ejecta from the DART-produced active asteroid Dimorphos

    Get PDF
    Some active asteroids have been proposed to be formed as a result of impact events(1). Because active asteroids are generally discovered by chance only after their tails have fully formed, the process of how impact ejecta evolve into a tail has, to our knowledge, not been directly observed. The Double Asteroid Redirection Test (DART) mission of NASA(2), in addition to having successfully changed the orbital period of Dimorphos(3), demonstrated the activation process of an asteroid resulting from an impact under precisely known conditions. Here we report the observations of the DART impact ejecta with the Hubble Space Telescope from impact time T + 15 min to T + 18.5 days at spatial resolutions of around 2.1 km per pixel. Our observations reveal the complex evolution of the ejecta, which are first dominated by the gravitational interaction between the Didymos binary system and the ejected dust and subsequently by solar radiation pressure. The lowest-speed ejecta dispersed through a sustained tail that had a consistent morphology with previously observed asteroid tails thought to be produced by an impact(4,5). The evolution of the ejecta after the controlled impact experiment of DART thus provides a framework for understanding the fundamental mechanisms that act on asteroids disrupted by a natural impact(1,6).Peer reviewe
    corecore