110 research outputs found
Mass comparisons of electric propulsion systems for NSSK of geosynchronous spacecraft
A model was developed and exercised to allow wet mass comparisons of three axis stabilized communication satellites delivered to geosynchronous transfer orbit. The mass benefits of using advanced chemical propulsion for apogee injection and north-south stationkeeping (NSSK) functions or electric propulsion (hydrazine arcjets and xenon ion thrusters) for NSSK functions are documented. A large derated ion thrusters is proposed which minimizes thruster lifetime concerns and qualification test times when compared to those of smaller ion thrusters planned for NSSK applications. The mass benefits, which depend on the spacecraft mass and mission duration, increase dramatically with arcjet specific impulse in the 500 to 600 s range, but are nearly constant for the derated ion thruster operated in the 2300 to 3000 s range. For a given mission, the mass benefits with an ion system are typically double those of the arcjet system; however, the total thrusting time with arcjets is less than 1/3 that with ion thrusters for the same thruster power. The mass benefits may permit increases in revenue producing payload or reduce launch costs by allowing a move to a smaller launch vehicle
Absolutely ubiquitous groups
We characterise absolutely ubiquitous groups in
the class of model complete ω-categorical groups
Structural, magnetic, dielectric and mechanical properties of (Ba,Sr)MnO ceramics
Ceramic samples, produced by conventional sintering method in ambient air,
6H-SrMnO(6H-SMO), 15R-BaMnO(15R-BMO),
4H-BaSrMnO(4H-BSMO) were studied. In the XRD measurements
for SMO the new anomalies of the lattice parameters at 600-800 K range and the
increasing of thermal expansion coefficients with a clear maximum in a vicinity
at 670 K were detected. The Nel phase transition for BSMO was
observed at =250 K in magnetic measurements and its trace was detected in
dielectric, FTIR, DSC, and DMA experiments. The enthalpy and entropy changes of
the phase transition for BSMO at were determined as 17.5 J/mol and 70
mJ/K mol, respectively. The activation energy values and relaxation times
characteristic for relaxation processes were determined from the Arrhenius law.
Results of ab initio simulations showed that the contribution of the exchange
correlation energy to the total energy is about 30%.Comment: 12 pages, 12 figure
Genetic profile of sports climbing athletes from three different ethnicities
This study aimed to investigate the ACTN3 R577X, ACE I/D, CKM rs8111989, and TRHR rs7832552 genotypes in climbers and controls in three ethnicities. The study consisted of 258 climbers (Japanese, n = 100; Polish, n = 128; Russian, n = 30) and 1151 controls (Japanese: n = 332, Polish: n = 635, Russian: n = 184). Genotyping results were analyzed using the TaqMan approach in Japanese and Polish subjects and HumanOmni1-Quad Bead Chips in Russian subjects. There were no significant differences in ACTN3 R577X and ACE I/D polymorphism distribution between climbers and controls in any ethnic cohort or model. The frequencies of the C allele in the CKM polymorphism and the T allele in the TRHR polymorphism were higher in climbers than in controls only in the Russian cohort (p = 0.045 and p = 0.039, respectively). The results of the meta-analysis on three cohorts showed that the frequency of XX + RX genotypes in the ACTN3 R577X polymorphism was significantly higher in climbers than that in the controls (p = 0.01). The X allele of the ACTN3 R577X polymorphism was associated with sport climbing status, as assessed using a meta-analysis of climbers across three different ethnicities
Is COL1A1 Gene rs1107946 Polymorphism Associated with Sport Climbing Status and Flexibility?
The purpose of this study was to compare the frequency of COL1A1 rs1107946 polymorphism between sport climbers and controls from three ethnic groups (Japanese, Polish, and Russian) and investigate the effect of the COL1A1 rs1107946 polymorphism on the age-related decrease in flexibility in the general population. Study I consisted of 1929 healthy people (controls) and 218 climbers, including Japanese, Polish, and Russian participants. The results of the meta-analysis showed that the frequency of the AC genotype was higher in climbers than in the controls (p = 0.03). Study II involved 1093 healthy Japanese individuals (435 men and 658 women). Flexibility was assessed using a sit-and-reach test. There was a tendency towards association between sit-and-reach and the COL1A1 rs1107946 polymorphism (genotype: p = 0.034; dominant: p = 0.435; recessive: p = 0.035; over-dominant: p = 0.026). In addition, there was a higher negative correlation between sit-and-reach and age in the AA + CC genotype than in the AC genotype (AA + CC: r = -0.216, p < 0.001; AC: r = -0.089, p = 0.04; interaction p = 0.037). However, none of these results survived correction for multiple testing. Further studies are warranted to investigate the association between the COL1A1 gene variation and exercise-related phenotypes
Parallax in “Pi of the Sky” project
The main goal of the “Pi of the Sky” project is search for optical transients (OTs) of astrophysical origin, in particular those related to gamma-ray bursts (GRBs). Since March 2011 the project has two running observatories: one in northern Chile and the other one insouthern Spain. This allows for regular observations of a common sky fields, visible from both observatories which are scheduled usually 1–2 h per night. In such a case, the on-line flash recognition algorithm, looking for optical transients, can use parallax information toassure that events observed from both sites have parallax angle smaller than the error of astrometry. On the other hand, the remaining OT candidates can be verified against a hypothesis of being near-Earth objects. This paper presents algorithm using parallax information for identification of near-Earth objects, which might be satellites, or space debris elements. Preliminary results of the algorithm are also presented
Recommended from our members
Changes in aroma and sensory profile of food ingredients smoked in the presence of a zeolite filter
During smoking, formation of desirable smoky compounds and carcinogenic polycyclic aromatic hydrocarbons (PAH) are inextricably linked. We have previously developed a zeolite filter technology (PureSmoke Technology or PST) that reduces the PAH content of a smoke stream, particularly reducing the concentration of benzo[a]pyrene, a known carcinogen, by up to 93%. The aim of this work was to determine whether there were changes in the volatile and sensory profiles of ingredients smoked using PST compared to the traditional smoking process (Trad). Smoked tomato flakes (either PST or Trad) were added to either low-fat or full-fat cream cheese for sensory profiling and consumer preference tests, and volatile analysis was carried out using solid phase microextraction (SPME) followed by gas chromatography-mass spectrometry (GC-MS). The sensory analysis showed a significant decrease (p < 0.01) in bitterness when the PST was employed and a significant decrease in overall smoky aroma and flavor (p < 0.001), which resulted in an increase in the perception of cheesy aroma and flavor. This was consistent with a decrease in many of the smoky aroma compounds, particularly the guaiacols. However, consumer preference tests showed that there was no adverse effect on the flavor of the products, and there was even a tendency for the PST product to be preferred to the Trad product (p = 0.096). The smoke compounds were quantitated and compared in smoked tomato paste. Odor activity values (OAVs) calculated from the literature thresholds suggested that guaiacol and 4-alk(en)yl-substituted guaiacols are likely to be among the most highly odor-active compounds in these smoked ingredients
Spin-photon interface and spin-controlled photon switching in a nanobeam waveguide
Access to the electron spin is at the heart of many protocols for integrated
and distributed quantum-information processing [1-4]. For instance, interfacing
the spin-state of an electron and a photon can be utilized to perform quantum
gates between photons [2,5] or to entangle remote spin states [6-9].
Ultimately, a quantum network of entangled spins constitutes a new paradigm in
quantum optics [1]. Towards this goal, an integrated spin-photon interface
would be a major leap forward. Here we demonstrate an efficient and optically
programmable interface between the spin of an electron in a quantum dot and
photons in a nanophotonic waveguide. The spin can be deterministically prepared
with a fidelity of 96\%. Subsequently the system is used to implement a
"single-spin photonic switch", where the spin state of the electron directs the
flow of photons through the waveguide. The spin-photon interface may enable
on-chip photon-photon gates [2], single-photon transistors [10], and efficient
photonic cluster state generation [11]
- …