654 research outputs found

    Estructuras I: Ejercicios sobre estructuras trianguladas

    Get PDF
    Ejercicios de calculo de esfuerzos, dimensionado y comprobación de estructuras trianguladas

    Formación Dual en El Salvador

    Get PDF
    La Formación Dual se conceptualiza como una modalidad de aprendizaje que se desarrolla en dos ambientes diferentes y complementarios: una institución educativa y una empresa. Se fundamenta en la experiencia alemana de formar jóvenes que son, al mismo tiempo, estudiantes de un centro educativo y aprendices en una empresa. El modelo ofrece ventajas para todos los participantes, entre las cuales se destacan: 1) Identificación entre el estudiante - aprendiz y la empresa, de forma tal que al terminar sus estudios, la mayoría de los graduados se quedan laborando en la empresa que ha contribuido en su formación. 2) Fortalecimiento de la colaboración entre el centro de aprendizaje y la empresa formadora, creando una relación de mutuo beneficio entre ambos. La experiencia de la Escuela Especializada en Ingeniería ITCA-FEPADE en la implementación del modelo en la carrera de Mecatrónica ha sido satisfactoria y ha permitido obtener resultados importantes para poder multiplicar el modelo en otras carreras

    Madera termo-tratada de frondosas para uso estructural

    Full text link
    La madera termotratada es madera modificada mediante un proceso térmico a elevadas temperaturas que le proporciona mayor estabilidad dimensional y durabilidad sin incorporar productos químicos perjudiciales para el medio ambiente. Hasta el momento se ha aplicado fundamentalmente a madera de coniferas por motivos económicos, siendo su uso más habitual en ambientes exteriores o de elevada humedad, como elementos de revestimiento no estructurales, carpinterías, mobiliario de jardín, etc. En la presente tesis se estudia la viabilidad de la madera termotratada de frondosas para uso estructural, en particular fresno (Fraxinus excelsior L) y haya (Fagus sylvatica L). Con este fin, y considerando que el termotratamiento modifica la estructura interna de la madera resultando en un nuevo material, se realizan estudios experimentales y numéricos para su caracterización. Estos trabajos se desarrollan bajo el enfoque de la Mecánica de Fractura debido a la pérdida de resistencia y aumento de fragilidad que presenta el material, especialmente a tracción perpendicular a las fibras. Así mismo, se lleva a cabo una recopilación de las bases, fundamentos y metodologías de esta teoría aplicados a madera sin tratar y otros materiales debido a la inexistencia de este tipo de estudios en madera termotratada. De igual manera se realiza un programa de caracterización mecánica del material para determinar sus propiedades elásticas considerando un modelo ortótropo, necesarios en la investigación del comportamiento a fractura. El trabajo derivó en el desarrollo de un nuevo método de ensayo para la determinación multiparamétrica a partir de un sólo espécimen, proporcionando resultados mucho más robustos que los obtenidos con la metodología convencional de ensayos. En base a los trabajos realizados, considerando las limitaciones de resistencia y fragilidad, así como la dudosa aplicabilidad de las normativas existentes en madera sin tratar, se aconseja no utilizar tratamientos térmicos intensos en elementos estructurales primarios. Se propone su aplicación en elementos secundarios, de manera que un posible colapso no implique una pérdida de fiabilidad global de la estructura. Se estudia la viabilidad de un panel sandwich innovador y ecológico para fachadas expuesto a cargas de viento, compuesto de madera termotratada en las caras y panel aislante de fibras de madera con función estructural en el alma. Esta investigación se desarrolló dentro del proyecto de investigación Europeo "Holiwood", Holistic implementation of European thermal treated hardwood (TMT) in the sector of construction industry and noise protection by sustainable, knowledge-based and value added products, perteneciente al sexto Programa Marco. ABSTRACT Hcat-trcatcd wood is modified wood by a thermal process at high temperatures which provides greater dimensional stability and durability without adding harmful chemicals to the environment. It has been mainly applied to softwoods due mainly to economical reasons, being its most common use outdoors or in high humidity environments, as non-structural elements, furniture, etc. The present Thesis studies the feasibility of heat-treated hardwoods for structural uses, particularly ash (Fraxinus excelsior L) and beech (Fagus sylvatica L). To this end, and considering that heat treatment modifies the internal structure of the wood resulting in a new material, experimental and numerical studies are performed for its characterization. This investigation is developed under the approach of Fracture Mechanics due to the loss of strength and the increase in brittlcncss of the material, especially in tension perpendicular to the grain. Likewise, it holds a collection of the bases, foundations and methodologies of this theory applied to untreated wood and other materials due to the lack of such studies in heat-treated wood. In addition, studies for the mechanical characterization of the material are performed in order to determine the elastic properties considering an orthotropic model. This work is necessary in the investigation of the fracture behavior. It led to the development of a new test method for multiparameter determination by using just a single specimen, providing much more robust results than those obtained with conventional test methodology. Based on this investigation, and considering the limitations of strength and brittleness, and the questionable applicability of existing standards for untreated wood, it is advised not to use intense heat treatments in primary structural elements. It is proposed the application to secondary elements, so that a possible collapse does not involve a loss of overall reliability of the structure. It is studied the feasibility of an innovative and ecological sandwich panel for facades exposed to wind loads, composed by heat-treated wood faces and insulating wood fiberboard with structural function in the core. This investigación was developed within the European research project "Holiwood", Holistic implementation of European thermal treated hardwood (TMT) in the sector of construction industry and noise protection by sustainable, knowledge-based and value added products, of the Sixth Framework Program

    Mechanical Properties of Small Clear Specimens of Eucalyptus globulus Labill

    Get PDF
    Eucalyptus globulus Labill stands out as one of the hardwood species produced in Europe with prominent mechanical properties, which is undergoing a growing interest in extending added value. The development of engineered wood products with this species and its application in timber structures involving numerical finite element simulations requires knowledge of the mechanical properties for the different orthotropic material directions. The aim of the present study is to determine the main mechanical properties of E. globulus from small clear specimens, necessary for the development of finite element models. The work provides experimental results on the ultimate capacity and modulus of elasticity considering different stresses: tension parallel and perpendicular to the grain, compression parallel and perpendicular to the grain (in radial and tangential directions), shear and longitudinal static bending. The work is complemented with experimental data on timber-to-timber friction coefficients for 0°, 45°, and 90° orientation angles, which are useful in the modeling of traditional joints. Very high values of ultimate stress and modulus of elasticity for the different mechanical properties were obtained, highlighting the great potential of this species for structural applicationsThe work has been developed within the framework of the research project BIA2015-64491-P Analysis of the stress relaxation in curved members and new joints solutions for timber Gridshells made out of Eucalyptus globulus, co-financed by the Ministry of Economy and Competitiveness of Spain Government and ERDF fundsS

    Experimental evaluation of mode II fracture properties of Eucalyptus globulus L.

    Get PDF
    research projects BIA 2015-64491-P. UIDB/00667/2020 (UNIDEMI).Eucalyptus globulus Labill is a hardwood species of broad growth in temperate climates, which is receiving increasing interest for structural applications due to its high mechanical properties. Knowing the fracture behaviour is crucial to predict, through finite element models, the load carrying capacity of engineering designs with possibility of brittle failures such as elements with holes, notches, or certain types of joints. This behaviour can be adequately modelled on a macroscopic scale by the constitutive cohesive law. A direct identification of the cohesive law of Eucalyptus globulus L. in Mode II was performed by combining end-notched flexure (ENF) tests with digital image correlation (DIC) for radial-longitudinal crack propagation system. The critical strain energy release for this fracture mode, which represents the material toughness to crack-growth, was determined by applying the Compliance Based Beam Method (CBBM) as data reduction scheme and resulted in a mean value of 1.54 N/mm.publishersversionpublishe

    Buckling performance of variable stiffness composites considering material uncertainties via multiscale stochastic fibre volumes

    Get PDF
    The novel manufacturing techniques of composite laminates are leading to a reduction in the amount of defects present at the mesoscale level of variable stiffness plates (VSP), see for instance the Continuous Tow Shearing [1] method that permits to avoid the misalingments and skip the presence of gaps and/or overlaps among tows. Nevertheless, the inner constituents of the composite material might not be flaw-exempt, e.g: void content, variation in the fibre volume, presence of different phases, etc. This fact leads to the need of a multiscale analysis of the whole VSP, which have been demonstrated to be computationally expensive for classic composite structures. In the recent years, the Carrera Unified Formulation (CUF) [2] has been extended to the micromechanical [3] and multiscale [4] analysis of material composites, providing solutions that required fewer number of degrees of freedom and, thus, a reduction in terms of CPU time. By using the CUF framework, extended to both VSP [5] and micromechanics, this work aims to show how variations in the fibre volume content of the material affect the buckling performance of VSPs. For doing so, stochastic fibre volume fields are generated by means of the Covariance Matrix Decomposition (CMD) [6]. Each component of the random field is assigned to a micromechanical model in order to homogenise the material elastic properties, thus leading to a spatially varying distribution of such properties

    Reliability design optimisation of classic composite plates using a CUF-based layerwise approach

    Get PDF
    Uncertainties in the manufacturing process of structures may arise at any moment of the fabrication chain. In the case of composite structures, such uncertainties may appear in the material elastic properties as a result of the microscale features of such material or even from manufacturing flaws, such as misalignments, fibre waviness, etc. [1] when assembling the final product. As a result of these defects, the structural response of the final structure might be compromised. Therefore, a reliability analysis is needed. In this work, a reliability-based design optimization (RBDO) [2] regarding the linearized buckling behavior of a straight-fibre composite laminate is carried out concerning homogeneous material elastic properties variation. In order to perform such analyses, Carrera Unified Formulation (CUF) [3] is used, according to which structural theories with low-order accuracy to layerwise models can be implemented in a hierarchical and unified manner. These analyses are then used to build a surrogate model based on Polynomial Chaos Kriging (PCK) [4], which substitutes the finite element model and thus accelerates the optimization process. The final scope of the work is to show that layerwise models can help to broaden the design space that other structural approaches may have shrunk, while subjected to the manufacturing constraints that the industry has imposed through the years [5]. References [1] A. Pagani, A.R. Sanchez-Majano. Influence of fibre misalingments on buckling performance of variable stiffness composites using layerwise models and random fields. Mechanics of Advanced Materials and Structures 2020. DOI: https://doi.org/10.1080/15376494.2020.1771485 [2] M. Moustapha, B. Sudret. Surrogate-assisted reliability-based design optimization: a survey and a unified modular framework. Structural and Multidisciplinary Optimization 60, 2157–2176 (2019). DOI: 10.1007/s00158-019-02290-y [3] E. Carrera, M. Cinefra, M. Petrolo, E. Zappino. Finite Element Analysis of Structures through Unified Formulation. Wiley & Sons. 2014. ISBN: 978-1-119-94121-7. [4] R. Schobi, S. Marelli, B. Sudret, UQLab user manual – Polynomial chaos Kriging, Report # UQLab-V1.3-109, Chair of Risk, Safety and Uncertainty Quantification, ETH Zurich, Switzerland, 2019 [5] G.H.C. Silva, A.P. do Prado, P.H. Cabral, R. De Breuker, J.K.S. Dillinger. Tailoring of a Composite Regional Jet Wing Using the Slice and Swap Method. Journal of Aircraft, 1–15. (2019) DOI:10.2514/1.c03509

    Influence of fiber misalignments on buckling performance of variable stiffness composites using layerwise models and random fields

    Get PDF
    Additive manufacturing brought to the emergence of a new class of fiber-reinforced materials; namely, the Variable Angle Tow (VAT) composites. Automated fiber placement machines allow the fibers to be relaxed along curvilinear paths within the lamina. In theory, the designer can conceive VAT structures with unexplored capabilities and tailor materials with optimized stiffness-to-weight ratios. In practise, steering brittle fibers, generally made of glass or carbon, is not trivial and highly affected from the printer signature. This paper wants to explore the effect of fiber misalignment on the buckling response of laminated VAT composites. For doing so, we use the Carrera Unified Formulation (CUF), which allows to develop layerwise models with unprecedented accuracy in a straightforward and systematic manner. Variation patterns are generated at the layer scale by means of random fields through a Monte Carlo analysis. The stochastic variation (defects) is propagated through the scales and correlated with the global buckling response of VAT panels. The results show that layerwise models outperform equivalent single layer theories, since the former are able to foresee eventual switching between buckling modes, and thus making them fundamental in uncertainty analysis
    corecore