20 research outputs found

    Characterization of genomic copy number variation in Mus musculus associated with the germline of inbred and wild mouse populations, normal development, and cancer

    Get PDF
    Mus musculus is a human commensal species and an important model of human development and disease with a need for approaches to determine the contribution of copy number variants (CNVs) to genetic variation in laboratory and wild mice, and arising with normal mouse development and disease. Here, the Mouse Diversity Genotyping array (MDGA)-approach to CNV detection is developed to characterize CNV differences between laboratory and wild mice, between multiple normal tissues of the same mouse, and between primary mammary gland tumours and metastatic lung tissue. A CNV detection pipeline was used in conjunction with evaluated probe sets, targeting 925,378 loci at an inter-probe-set median distance of 319 bp, to identify CNVs in a publicly-available dataset that includes representatives of 114 classical laboratory (CL) strain mice, 52 wild-derived (WD) mice, and 19 wild-caught (WC) mice. On average, WC and WD mice (~50 CNVs/mouse) have twice as many CNVs as CL mice. DdPCR confirmed 96% of MDGA-predicted copy number states. CL CNVs impact gene pathways related to immunity and nucleosome-associated functions, whereas olfaction and pheromone detection are impacted in WC mice. WD mice share impacted genic pathways with both cohorts. In a five-member C57BL/6J inbred mouse family, losses of developmentally-important HOXA genes were detected and confirmed in multiple normal tissues. Further confirmation of postzygotic Hoxa13 losses in unrelated C57BL/6J, CBA/CaJ, and DBA/2J mice points to a widespread phenomenon occurring in mice, involving mutation hotspots and/or programmed losses. In comparison to normal tissues (25 CNVs/mouse), cancer samples from an MMTV-PyMT mouse breast cancer model with lung metastasis have 1.6- to 3.2-fold more CNVs. CNV size is reduced and CNV recurrence is increased among primary tumours in the absence of the hyaluronan-mediated motility receptor, suggestive of altered mechanisms of CNV formation and selection for specific phenotypes in the tumour microenvironment, respectively. CNVs were found to arise during normal development, producing different CNV profiles than with tumorigenesis and metastasis. CNV profiles also differ between laboratory and wild mice. This thesis presents improvements to an array-based CNV detection and analysis pipeline which was used to determine the contribution of CNVs to genetic variation in M. musculus

    Genomic copy number variation in Mus musculus.

    Get PDF
    BACKGROUND: Copy number variation is an important dimension of genetic diversity and has implications in development and disease. As an important model organism, the mouse is a prime candidate for copy number variant (CNV) characterization, but this has yet to be completed for a large sample size. Here we report CNV analysis of publicly available, high-density microarray data files for 351 mouse tail samples, including 290 mice that had not been characterized for CNVs previously. RESULTS: We found 9634 putative autosomal CNVs across the samples affecting 6.87% of the mouse reference genome. We find significant differences in the degree of CNV uniqueness (single sample occurrence) and the nature of CNV-gene overlap between wild-caught mice and classical laboratory strains. CNV-gene overlap was associated with lipid metabolism, pheromone response and olfaction compared to immunity, carbohydrate metabolism and amino-acid metabolism for wild-caught mice and classical laboratory strains, respectively. Using two subspecies of wild-caught Mus musculus, we identified putative CNVs unique to those subspecies and show this diversity is better captured by wild-derived laboratory strains than by the classical laboratory strains. A total of 9 genic copy number variable regions (CNVRs) were selected for experimental confirmation by droplet digital PCR (ddPCR). CONCLUSION: The analysis we present is a comprehensive, genome-wide analysis of CNVs in Mus musculus, which increases the number of known variants in the species and will accelerate the identification of novel variants in future studies

    Genetic Analysis of Lung Cancer and the Germline Impact on Somatic Mutation Burden

    Get PDF
    International audienceBackground Germline genetic variation contributes to lung cancer (LC) susceptibility. Previous genome-wide association studies (GWAS) have implicated susceptibility loci involved in smoking behaviors and DNA repair genes, but further work is required to identify susceptibility variants. Methods To identify LC susceptibility loci, a family history-based genome-wide association by proxy (GWAx) of LC (48 843 European proxy LC patients, 195 387 controls) was combined with a previous LC GWAS (29 266 patients, 56 450 controls) by meta-analysis. Colocalization was used to explore candidate genes and overlap with existing traits at discovered susceptibility loci. Polygenic risk scores (PRS) were tested within an independent validation cohort (1 666 LC patients vs 6 664 controls) using variants selected from the LC susceptibility loci and a novel selection approach using published GWAS summary statistics. Finally, the effects of the LC PRS on somatic mutational burden were explored in patients whose tumor resections have been profiled by exome (n = 685) and genome sequencing (n = 61). Statistical tests were 2-sided. Results The GWAx–GWAS meta-analysis identified 8 novel LC loci. Colocalization implicated DNA repair genes (CHEK1), metabolic genes (CYP1A1), and smoking propensity genes (CHRNA4 and CHRNB2). PRS analysis demonstrated that these variants, as well as subgenome-wide significant variants related to expression quantitative trait loci and/or smoking propensity, assisted in LC genetic risk prediction (odds ratio = 1.37, 95% confidence interval = 1.29 to 1.45; P < .001). Patients with higher genetic PRS loads of smoking-related variants tended to have higher mutation burdens in their lung tumors. Conclusions This study has expanded the number of LC susceptibility loci and provided insights into the molecular mechanisms by which these susceptibility variants contribute to LC development

    Peri-operative red blood cell transfusion in neonates and infants: NEonate and Children audiT of Anaesthesia pRactice IN Europe: A prospective European multicentre observational study

    Get PDF
    BACKGROUND: Little is known about current clinical practice concerning peri-operative red blood cell transfusion in neonates and small infants. Guidelines suggest transfusions based on haemoglobin thresholds ranging from 8.5 to 12 g dl-1, distinguishing between children from birth to day 7 (week 1), from day 8 to day 14 (week 2) or from day 15 (≄week 3) onwards. OBJECTIVE: To observe peri-operative red blood cell transfusion practice according to guidelines in relation to patient outcome. DESIGN: A multicentre observational study. SETTING: The NEonate-Children sTudy of Anaesthesia pRactice IN Europe (NECTARINE) trial recruited patients up to 60 weeks' postmenstrual age undergoing anaesthesia for surgical or diagnostic procedures from 165 centres in 31 European countries between March 2016 and January 2017. PATIENTS: The data included 5609 patients undergoing 6542 procedures. Inclusion criteria was a peri-operative red blood cell transfusion. MAIN OUTCOME MEASURES: The primary endpoint was the haemoglobin level triggering a transfusion for neonates in week 1, week 2 and week 3. Secondary endpoints were transfusion volumes, 'delta haemoglobin' (preprocedure - transfusion-triggering) and 30-day and 90-day morbidity and mortality. RESULTS: Peri-operative red blood cell transfusions were recorded during 447 procedures (6.9%). The median haemoglobin levels triggering a transfusion were 9.6 [IQR 8.7 to 10.9] g dl-1 for neonates in week 1, 9.6 [7.7 to 10.4] g dl-1 in week 2 and 8.0 [7.3 to 9.0] g dl-1 in week 3. The median transfusion volume was 17.1 [11.1 to 26.4] ml kg-1 with a median delta haemoglobin of 1.8 [0.0 to 3.6] g dl-1. Thirty-day morbidity was 47.8% with an overall mortality of 11.3%. CONCLUSIONS: Results indicate lower transfusion-triggering haemoglobin thresholds in clinical practice than suggested by current guidelines. The high morbidity and mortality of this NECTARINE sub-cohort calls for investigative action and evidence-based guidelines addressing peri-operative red blood cell transfusions strategies. TRIAL REGISTRATION: ClinicalTrials.gov, identifier: NCT02350348

    Localized efficacy of environmental RNAi in Tetranychus urticae

    No full text
    Environmental RNAi has been developed as a tool for reverse genetics studies and is an emerging pest control strategy. The ability of environmental RNAi to efficiently down-regulate the expression of endogenous gene targets assumes efficient uptake of dsRNA and its processing. In addition, its efficiency can be augmented by the systemic spread of RNAi signals. Environmental RNAi is now a well-established tool for the manipulation of gene expression in the chelicerate acari, including the two-spotted spider mite, Tetranychus urticae. Here, we focused on eight single and ubiquitously-expressed genes encoding proteins with essential cellular functions. Application of dsRNAs that specifically target these genes led to whole mite body phenotypes-dark or spotless. These phenotypes were associated with a significant reduction of target gene expression, ranging from 20 to 50%, when assessed at the whole mite level. Histological analysis of mites treated with orally-delivered dsRNAs was used to investigate the spatial range of the effectiveness of environmental RNAi. Although macroscopic changes led to two groups of body phenotypes, silencing of target genes was associated with the distinct cellular phenotypes. We show that regardless of the target gene tested, cells that displayed histological changes were those that are in direct contact with the dsRNA-containing gut lumen, suggesting that the greatest efficiency of the orally-delivered dsRNAs is localized to gut tissues in T. urticae

    Environmental RNA interference in two-spotted spider mite, Tetranychus urticae, reveals dsRNA processing requirements for efficient RNAi response

    Get PDF
    Comprehensive understanding of pleiotropic roles of RNAi machinery highlighted the conserved chromosomal functions of RNA interference. The consequences of the evolutionary variation in the core RNAi pathway genes are mostly unknown, but may lead to the species-specific functions associated with gene silencing. The two-spotted spider mite, Tetranychus urticae, is a major polyphagous chelicerate pest capable of feeding on over 1100 plant species and developing resistance to pesticides used for its control. A well annotated genome, susceptibility to RNAi and economic importance, make T. urticae an excellent candidate for development of an RNAi protocol that enables high-throughput genetic screens and RNAi-based pest control. Here, we show that the length of the exogenous dsRNA critically determines its processivity and ability to induce RNAi in vivo. A combination of the long dsRNAs and the use of dye to trace the ingestion of dsRNA enabled the identification of genes involved in membrane transport and 26S proteasome degradation as sensitive RNAi targets. Our data demonstrate that environmental RNAi can be an efficient reverse genetics and pest control tool in T. urticae. In addition, the species-specific properties together with the variation in the components of the RNAi machinery make T. urticae a potent experimental system to study the evolution of RNAi pathways.Tis work was supported by the Government of Canada through the Ontario Research Fund (RE08-067), the Natural Sciences and Engineering Research Council of Canada (NSERC) and by the European Union’s Horizon 2020 research and innovation program (773902-SuperPests) awarded to MG and VG; and by the Japan Society for the Promotion of Science KAKENHI (Grant Nos. 18H02203 to TS, 19K22304 to TF and 19K23674 to MT) and the Institute of Global Innovation Research in TUAT to MT, TS, TF and VG. MA was funded through the Global Tesis program, the University of Bari Aldo Moro, Italy

    Rapid specialization of counter defenses enables two-spotted spider mite to adapt to novel plant hosts

    Get PDF
    Genetic adaptation, occurring over a long evolutionary time, enables host-specialized herbivores to develop novel resistance traits and to efficiently counteract the defenses of a narrow range of host plants. In contrast, physiological acclimation, leading to the suppression and/or detoxification of host defenses, is hypothesized to enable broad generalists to shift between plant hosts. However, the host adaptation mechanisms used by generalists composed of host-adapted populations are not known. Two-spotted spider mite (TSSM; Tetranychus urticae) is an extreme generalist herbivore whose individual populations perform well only on a subset of potential hosts. We combined experimental evolution, Arabidopsis thaliana genetics, mite reverse genetics, and pharmacological approaches to examine mite host adaptation upon the shift of a bean (Phaseolus vulgaris)-adapted population to Arabidopsis. We showed that cytochrome P450 monooxygenases are required for mite adaptation to Arabidopsis. We identified activities of two tiers of P450s: general xenobiotic-responsive P450s that have a limited contribution to mite adaptation to Arabidopsis and adaptation-associated P450s that efficiently counteract Arabidopsis defenses. In approximately 25 generations of mite selection on Arabidopsis plants, mites evolved highly efficient detoxification-based adaptation, characteristic of specialist herbivores. This demonstrates that specialization to plant resistance traits can occur within the ecological timescale, enabling the TSSM to shift to novel plant hosts

    ÎČ-Cyanoalanine synthase protects mites against Arabidopsis defenses

    No full text
    Glucosinolates are antiherbivory chemical defense compounds in Arabidopsis (Arabidopsis thaliana). Specialist herbivores that feed on brassicaceous plants have evolved various mechanisms aimed at preventing the formation of toxic isothiocyanates. In contrast, generalist herbivores typically detoxify isothiocyanates through glutathione conjugation upon exposure. Here, we examined the response of an extreme generalist herbivore, the two-spotted spider mite Tetranychus urticae (Koch), to indole glucosinolates. Tetranychus urticae is a composite generalist whose individual populations have a restricted host range but have an ability to rapidly adapt to initially unfavorable plant hosts. Through comparative transcriptomic analysis of mite populations that have differential susceptibilities to Arabidopsis defenses, we identified ÎČ-cyanoalanine synthase of T. urticae (TuCAS), which encodes an enzyme with dual cysteine and ÎČ-cyanoalanine synthase activities. We combined Arabidopsis genetics, chemical complementation and mite reverse genetics to show that TuCAS is required for mite adaptation to Arabidopsis through its ÎČ-cyanoalanine synthase activity. Consistent with the ÎČ-cyanoalanine synthase role in detoxification of hydrogen cyanide (HCN), we discovered that upon mite herbivory, Arabidopsis plants release HCN. We further demonstrated that indole glucosinolates are sufficient for cyanide formation. Overall, our study uncovered Arabidopsis defenses that rely on indole glucosinolate-dependent cyanide for protection against mite herbivory. In response, Arabidopsis-adapted mites utilize the ÎČ-cyanoalanine synthase activity of TuCAS to counter cyanide toxicity, highlighting the mite’s ability to activate resistant traits that enable this extreme polyphagous herbivore to exploit cyanogenic host plants

    RHAMM regulates MMTV-PyMT-induced lung metastasis by connecting STING-dependent DNA damage sensing to interferon/STAT1 pro-apoptosis signaling

    No full text
    Abstract Background RHAMM is a multifunctional protein that is upregulated in breast tumors, and the presence of strongly RHAMM+ve cancer cell subsets associates with elevated risk of peripheral metastasis. Experimentally, RHAMM impacts cell cycle progression and cell migration. However, the RHAMM functions that contribute to breast cancer metastasis are poorly understood. Methods We interrogated the metastatic functions of RHAMM using a loss-of-function approach by crossing the MMTV-PyMT mouse model of breast cancer susceptibility with Rhamm −/− mice. In vitro analyses of known RHAMM functions were performed using primary tumor cell cultures and MMTV-PyMT cell lines. Somatic mutations were identified using a mouse genotyping array. RNA-seq was performed to identify transcriptome changes resulting from Rhamm-loss, and SiRNA and CRISPR/Cas9 gene editing was used to establish cause and effect of survival mechanisms in vitro. Results Rhamm-loss does not alter initiation or growth of MMTV-PyMT-induced primary tumors but unexpectedly increases lung metastasis. Increased metastatic propensity with Rhamm-loss is not associated with obvious alterations in proliferation, epithelial plasticity, migration, invasion or genomic stability. SNV analyses identify positive selection of Rhamm −/− primary tumor clones that are enriched in lung metastases. Rhamm −/− tumor clones are characterized by an increased ability to survive with ROS-mediated DNA damage, which associates with blunted expression of interferon pathway and target genes, particularly those implicated in DNA damage-resistance. Mechanistic analyses show that ablating RHAMM expression in breast tumor cells by siRNA knockdown or CRISPR-Cas9 gene editing blunts interferon signaling activation by STING agonists and reduces STING agonist-induced apoptosis. The metastasis-specific effect of RHAMM expression-loss is linked to microenvironmental factors unique to tumor-bearing lung tissue, notably high ROS and TGFB levels. These factors promote STING-induced apoptosis of RHAMM+ve tumor cells to a significantly greater extent than RHAMM−ve comparators. As predicted by these results, colony size of Wildtype lung metastases is inversely related to RHAMM expression. Conclusion RHAMM expression-loss blunts STING-IFN signaling, which offers growth advantages under specific microenvironmental conditions of lung tissue. These results provide mechanistic insight into factors controlling clonal survival/expansion of metastatic colonies and has translational potential for RHAMM expression as a marker of sensitivity to interferon therapy

    Germline determinants of humoral immune response to HPV-16 protect against oropharyngeal cancer

    Get PDF
    Although several oropharyngeal cancer (OPC) susceptibility loci have been identified, most previous studies lacked detailed information on human papillomavirus (HPV) status. We conduct a genome-wide analysis by HPV16 serology status in 4,002 oral cancer cases (OPC and oral cavity cancer (OCC)) and 5,256 controls. We detect four susceptibility loci pointing to a distinct genetic predisposition by HPV status. Our most notable finding in the HLA region, that is now confirmed to be specific of HPV(+)OPC risk, reveal two independent loci with strong protective effects, one refining the previously reported HLA class II haplotype association. Antibody levels against HPV16 viral proteins strongly implicate the protective HLA variants as major determinants of humoral response against L1 capsid protein or E6 oncoprotein suggesting a natural immune response against HPV(+)OPC promoted by HLA variants. This indicates that therapeutic vaccines that target E6 and attenuate viral response after established HPV infections might protect against HPV(+)OPC
    corecore