30 research outputs found

    High Voltage Mg-Doped Na 0.67 Ni 0.3– x Mg x Mn 0.7 O 2 ( x = 0.05, 0.1) Na-Ion Cathodes with Enhanced Stability and Rate Capability

    Get PDF
    Magnesium substituted P2-structure Na0.67Ni0.3Mn0.7O2 materials have been prepared by a facile solid-state method and investigated as cathodes in sodium-ion batteries. The Mg-doped materials described here were characterized by X-ray diffraction (XRD), 23Na solid-state nuclear magnetic resonance (SS-NMR), and scanning electron microscopy (SEM). The electrochemical performance of the samples was tested in half cells vs Na metal at room temperature. The Mg-doped materials operate at a high average voltage of ca. 3.3 V vs Na/Na+ delivering specific capacities of ∼120 mAh g–1, which remain stable up to 50 cycles. Mg doping suppresses the well-known P2–O2 phase transition observed in the undoped composition by stabilizing the reversible OP4 phase during charging (during Na removal). GITT measurements showed that the Na-ion mobility is improved by 2 orders of magnitude with respect to the parent P2–Na0.67Ni0.3Mn0.7O2 material. The fast Na-ion mobility may be the cause of the enhanced rate performance

    Oxygen redox chemistry without excess alkali-metal ions in Na2/3[Mg0.28Mn0.72]O2

    Get PDF
    The search for improved energy-storage materials has revealed Li- and Na-rich intercalation compounds as promising high-capacity cathodes. They exhibit capacities in excess of what would be expected from alkali-ion removal/reinsertion and charge compensation by transition-metal (TM) ions. The additional capacity is provided through charge compensation by oxygen redox chemistry and some oxygen loss. It has been reported previously that oxygen redox occurs in O 2p orbitals that interact with alkali ions in the TM and alkali-ion layers (that is, oxygen redox occurs in compounds containing Li+–O(2p)–Li+ interactions). Na2/3[Mg0.28Mn0.72]O2 exhibits an excess capacity and here we show that this is caused by oxygen redox, even though Mg2+ resides in the TM layers rather than alkali-metal (AM) ions, which demonstrates that excess AM ions are not required to activate oxygen redox. We also show that, unlike the alkali-rich compounds, Na2/3[Mg0.28Mn0.72]O2 does not lose oxygen. The extraction of alkali ions from the alkali and TM layers in the alkali-rich compounds results in severely underbonded oxygen, which promotes oxygen loss, whereas Mg2+ remains in Na2/3[Mg0.28Mn0.72]O2, which stabilizes oxygen

    High voltage structural evolution and enhanced Na-ion diffusion in P2-Na2/3Ni1/3-xMgxMn2/3O2 (0 < x < 0.2) cathodes from diffraction, electrochemical and ab initio studies

    Get PDF
    We have presented a detailed investigation of the effects of Mg substitution on the structure, electrochemical performance and Na-ion diffusion in high voltage P2-type Na2/3Ni1/3-xMgxMn2/3O2 (0 <x< 0.20) cathode materials for Na-ion batteries. Structural analysis using neutron diffraction showed that Mg2+ substitutes random Ni2+ on the 2b sites from ordered [(Ni2+/Mn4+)O6] honeycomb units along the ab-plane, leading to an AB-type structure that can be indexed using the P63 space group. Within the sodium layers, high Mg-substituting levels (i.e. x = 0.2) caused a disruption in the typical Na zig-zag ordering observed in the undoped material, leading to a more disordered Na distribution in the layers. Load curves of the x = 0.1, 0.2 materials show smooth electrochemistry, indicative of a solid-solution process. Furthermore, DFT calculations showed an increase on Na-ion diffusivity on the Mg-substituted samples. Enhanced cycling stability was also observed in these materials; structural analysis using high-resolution in-operando synchrotron X-ray diffraction show that such an improved electrochemical performance is caused by the suppression of the O2 phase and switch to the formation of an OP4 phase. Ab-initio studies support our experimental evidence showing that the OP4 phase (cf. O2) is the most thermodynamically stable phase at high voltages for Mg-substituted compounds. Finally, we have provided evidence using diffraction for the x = 1/2 and x = 1/3 intermediate Na+-vacancy ordered phases in P2-Na 2/3Ni1/3Mn2/3O2

    What Triggers Oxygen Loss in Oxygen Redox Cathode Materials?

    Get PDF
    It is possible to increase the charge capacity of transition-metal (TM) oxide cathodes in alkali-ion batteries by invoking redox reactions on the oxygen. However, oxygen loss often occurs. To explore what affects oxygen loss in oxygen redox materials, we have compared two analogous Na-ion cathodes, P2-Na0.67Mg0.28Mn0.72O2 and P2-Na0.78Li0.25Mn0.75O2. On charging to 4.5 V, >0.4e– are removed from the oxide ions of these materials, but neither compound exhibits oxygen loss. Li is retained in P2-Na0.78Li0.25Mn0.75O2 but displaced from the TM to the alkali metal layers, showing that vacancies in the TM layers, which also occur in other oxygen redox compounds that exhibit oxygen loss such as Li[Li0.2Ni0.2Mn0.6]O2, are not a trigger for oxygen loss. On charging at 5 V, P2-Na0.78Li0.25Mn0.75O2 exhibits oxygen loss, whereas P2-Na0.67Mg0.28Mn0.72O2 does not. Under these conditions, both Na+ and Li+ are removed from P2-Na0.78Li0.25Mn0.75O2, resulting in underbonded oxygen (fewer than 3 cations coordinating oxygen) and surface-localized O loss. In contrast, for P2-Na0.67Mg0.28Mn0.72O2, oxygen remains coordinated by at least 2 Mn4+ and 1 Mg2+ ions, stabilizing the oxygen and avoiding oxygen loss

    Oxygen redox chemistry without excess alkali-metal ions in Na2/3_{2/3}[Mg0.28_{0.28}Mn0.72_{0.72}]O2_2

    Get PDF
    The search for improved energy-storage materials has revealed Li- and Na-rich intercalation compounds as promising high-capacity cathodes. They exhibit capacities in excess of what would be expected from alkali-ion removal/reinsertion and charge compensation by transition-metal (TM) ions. The additional capacity is provided through charge compensation by oxygen redox chemistry and some oxygen loss. It has been reported previously that oxygen redox occurs in O 2pp orbitals that interact with alkali ions in the TM and alkali-ion layers (that is, oxygen redox occurs in compounds containing Li+^+–O(2pp)–Li+^+ interactions). Na2/3_{2/3}[Mg0.28_{0.28}Mn0.72_{0.72}]O2_2 exhibits an excess capacity and here we show that this is caused by oxygen redox, even though Mg2+^{2+} resides in the TM layers rather than alkali-metal (AM) ions, which demonstrates that excess AM ions are not required to activate oxygen redox. We also show that, unlike the alkali-rich compounds, Na2/3_{2/3}[Mg0.28_{0.28}Mn0.72_{0.72}]O2_2 does not lose oxygen. The extraction of alkali ions from the alkali and TM layers in the alkali-rich compounds results in severely underbonded oxygen, which promotes oxygen loss, whereas Mg2+^{2+} remains in Na2/3_{2/3}[Mg0.28_{0.28}Mn0.72_{0.72}]O2_2, which stabilizes oxygen

    Artificial photosynthesis and the splitting of water to generate hydrogen

    No full text
    It is no exaggeration to state that the energy crisis is the most serious challenge that we face today. Among the strategies to gain access to reliable, renewable energy, the use of solar energy has clearly emerged as the most viable option. A promising direction in this context is artificial photosynthesis. In this article, we briefly describe the essential features of artificial photosynthesis in comparison with natural photosynthesis and point out the modest success that we have had in splitting water to produce oxygen and hydrogen, specially the latter

    Superior Performance of a MoS2-RGO Composite and a Borocarbonitride in the Electrochemical Detection of Dopamine, Uric Acid and Adenine

    No full text
    A MoS2-RGO composite and borocarbonitride (BC5N) have been used as electrodes to selectively detect dopamine and uric acid in the presence of ascorbic acid. Both the electrodes show excellent eletrocatalytic activity towards the detection of dopamine, the detection limits being 0.55 mu M and 2.1 mu M in the case of MoS2-RGO and BCN respectively. MoS2-RGO shows a linear range of current over the 1-110 mu M concentrations of dopamine, while BCN shows over the 2.3-20 mu M range. BCN also exhibits satisfactory performance in the oxidation of uric acid with a detection limit of 3.8 mu M and the linear range from 4 to 40 mu M. The MoS2-RGO has also been used to detect adenine as well

    Covalent and noncovalent functionalisation and solubilisation of nanodiamond

    No full text
    Covalent functionalisation of nanodiamond has been carried out by employing several methods. One of them involves the reaction of acid-treated nanodiamond with thionyl chloride followed by reaction with a long-chain aliphatic amine to produce the amide derivative. The second method involves reaction of acid-treated nanodiamond with an organosilicon or organotin reagent such as hexadecyltrimethoxysilane, dibutyldimethoxytin, and perfluoro-octyltriethoxysilane. The products of covalent functionalisation produce excellent dispersions in CCl<SUB>4</SUB> and toluene. SiO<SUB>2</SUB>-and SnO<SUB>2</SUB>-covered nanodiamond are obtained by heating the nanodiamond coated with the organosilane and the organotin reagents, respectively. By interaction of nanodiamond with surfactants such as sodium bis(2-ethylhexyl) sulphosuccinate (AOT), Triton X-100 (TX-100), polyvinyl alcohol (PVA), cetyltrimethylammonium bromide (CTAB), and tert-octylphenoxy poly(oxyethylene)ethanol (IGEPAL) gives good dispersions in water, the best dispersion with the lowest surfactant concentration being obtained with IGEPAL

    Strategies for the Synthesis of Graphene, Graphene Nanoribbons, Nanoscrolls and Related Materials

    No full text
    Single-layer graphene (SLG), the 3.4 angstrom thick two-dimensional sheet of sp(2) carbon atoms, was first prepared in 2004 by mechanical exfoliation of graphite crystals using the scotch tape technique. Since then, SLG has been prepared by other physical methods such as laser irradiation or ultrasonication of graphite in liquid media. Chemical methods of synthesis of SLG are more commonly used; the most popular involves preparation of single-layer graphene oxide followed by reduction with a stable reagent, often assisted by microwave heating. This method yields single-layer reduced graphene oxide. Other methods for preparing SLG include chemical vapour deposition over surfaces of transition metals such as Ni and Cu. Large-area SLG has also been prepared by epitaxial growth over SIC. Few-layer graphene (FLG) is prepared by several methods; arc discharge of graphite in hydrogen atmosphere being the most convenient. Several other methods for preparing FLG include exfoliation of graphite oxide by rapid heating, ultrasonication or laser irradiation of graphite in liquid media, reduction of few-layer graphene oxide, alkali metal intercalation followed by exfoliation. Graphene nanoribbons, which are rectangular strips of graphene, are best prepared by the unzipping of carbon nanotubes by chemical oxidation or laser irradiation. Many graphene analogues of inorganic materials such as MoS2, MoSe2 and BN have been prepared by mechanical exfoliation, ultrasonication and by chemical methods involving high-temperature or hydrothermal reactions and intercalation of alkali metals followed by exfoliation. Scrolls of graphene are prepared by potassium intercalation in graphite or by microwave irradiation of graphite immersed in liquid nitrogen

    Mechanical properties of nanodiamond-reinforced polymer-matrix composites

    No full text
    Poly(vinyl alcohol)-matrix reinforced with nanodiamond (ND) particles, with ND content up to 0.6 wt%, were synthesized. Characterization of the composites by transmission electron microscopy (TEM) and small angle X-ray scattering (SAXS) reveal uniform distribution of the ND particles with no agglomeration in the matrix. Differential scanning calorimetry reveals that the crystallinity of the polymer increases with increasing ND content, indicating a strong interaction between ND and PVA. Nano-indentation technique was employed to assess the mechanical properties of composites. Results show that even small additions of ND lead to significant enhancement in the hardness and elastic modulus of PVA. Possible micromechanisms responsible for the enhancement of the mechanical properties are discussed
    corecore