5 research outputs found

    Caveolin-1 is required for TGF-β-induced transactivation of the EGF receptor pathway in hepatocytes through the activation of the metalloprotease TACE/ADAM17

    Get PDF
    Transforming growth factor-beta (TGF-β) plays a dual role in hepatocytes, inducing both pro- and anti-apoptotic responses, whose balance decides cell fate. Survival signals are mediated by the epidermal growth factor receptor (EGFR) pathway, which is activated by TGF-β in these cells. Caveolin-1 (Cav1) is a structural protein of caveolae linked to TGF-β receptors trafficking and signaling. Previous results have indicated that in hepatocytes, Cav1 is required for TGF-β-induced anti-apoptotic signals, but the molecular mechanism is not fully understood yet. In this work, we show that immortalized Cav1−/− hepatocytes were more sensitive to the pro-apoptotic effects induced by TGF-β, showing a higher activation of caspase-3, higher decrease in cell viability and prolonged increase through time of intracellular reactive oxygen species (ROS). These results were coincident with attenuation of TGF-β-induced survival signals in Cav1−/− hepatocytes, such as AKT and ERK1/2 phosphorylation and NFκ-B activation. Transactivation of the EGFR pathway by TGF-β was impaired in Cav1−/− hepatocytes, which correlated with lack of activation of TACE/ADAM17, the metalloprotease responsible for the shedding of EGFR ligands. Reconstitution of Cav1 in Cav1−/− hepatocytes rescued wild-type phenotype features, both in terms of EGFR transactivation and TACE/ADAM17 activation. TACE/ADAM17 was localized in detergent-resistant membrane (DRM) fractions in Cav1+/+ cells, which was not the case in Cav1−/− cells. Disorganization of lipid rafts after treatment with cholesterol-binding agents caused loss of TACE/ADAM17 activation after TGF-β treatment. In conclusion, in hepatocytes, Cav1 is required for TGF-β-mediated activation of the metalloprotease TACE/ADAM17 that is responsible for shedding of EGFR ligands and activation of the EGFR pathway, which counteracts the TGF-β pro-apoptotic effects. Therefore, Cav1 contributes to the pro-tumorigenic effects of TGF-β in liver cancer cells

    TGF-ß-regulated genes implicated in invasion that might participate in the control of apoptosis in liver tumor cells

    No full text
    [eng] In the last years our research has been focused on analyzing the signaling pathways induced by TGF-β in liver tumor cells, to understand the molecular mechanisms that confer resistance to its suppressor effects. TGF-β induces apoptosis in fetal and neonatal murine hepatocytes, as well as in liver tumor cells, and chronic exposure of these cells to TGF-β iinduces a process of Epithelial to Mesenchymal Transition (EMT). In the present work we wanted to identify TGF-β-regulated genes that being involved in EMT and cell invasion could also participate in the control of growth, apoptosis and/or differentiation. Firstly we analyzed the role of genes regulated by TGF-β and implicated in EMT that might participate in apoptosis control in hepatocytes, focusing on Snail and SPARC. Inhibition of Snail, through targeting knock-down with specific siRNA, impairs TGF-β-induced EMT in murine hepatocytes and significantly enhances their apoptotic response, which indicates that Snail plays a relevant role in conferring resistance to TGF-β-induced cell death. TGF-β also induces anti-apoptotic signals, mediated by the activation of the epidermal growth factor receptor (EGFR). Snail downregulation impairs the TGF-β-induced EGFR ligands expression and inhibits the phosphorylation of Akt, Erks and c-Src family, which is coincident with activation of mitochondrial-dependent apoptotic events and an earlier Smad3 phosphorylation in TGF-β-treated cells. We also demonstrate a role for Snail in sensitizing murine hepatocytes to cell death by anoikis, which is a relevant phenomenon in metastatic processes. Snail1 downregulation in human hepatocellular carcinoma (HCC) cells, which are partially or fully resistant to TGF-β suppressor effects, restores the apoptotic response to TGF-β. TGF-β induces SPARC expression in FaO rat liver tumor cells but not in neonatal murine untransformed hepatocytes. SPARC inhibition, through targeting knock-down with specific siRNA, reveals a role for SPARC in mediating TGF-β-induced EMT in liver tumor cells. Furthermore, SPARC knock-down significantly enhances the TGF-β-induced apoptotic response. Interestingly, SPARC effects might be mediated by Snail, since SPARC silencing impairs Snai1 up-regulation by TGF-β in FaO cells. We next wanted to study the tumorigenesis of FaO cells after in vitro chronic treatment with TGF-β for 4 weeks (TβT-FaO). For this, we injected these cells through both subcutaneous and intrasplenic procedures. Liver tumor formation derived from intrasplenic injection of FaO cells induced a multifocal highly proliferative hepatocarcinoma in all mice, whereas parallel inoculation of TβT-FaO cells promoted low proliferative unifocal and heterogeneous hepatic lesions which showed higher staining for phospho-Smad2. Detailed analysis of tumors revealed lesions with bile duct characteristics and lesions with a dedifferentiated (hepatoblast) phenotype. Primary culture of tumor cells from both FaO- and TβT-FaO-induced intrasplenic lesions indicated that only cells obtained from FaO-induced tumors undergo apoptosis in response to TGF-β, whereas TβT-FaO-derived tumors contain cells that are fully resistant. Analysis of the phenotype of tumors and their derived cells showed that intrasplenic injection of TβT-FaO cells may produce cholangiocarcinoma-like and hepatoblastoma-like tumors. In summary, chronic in vitro TGF- β treatment of FaO cells changed their tumorigenic potential. Tumor growth was slower but cells are resistant to apoptosis. Futhermore, phenotype of lesions reflected a stem-like phenotype which provokes the appearance of less differentiated tumors (hepatoblastomas) or transdifferentiation to a different liver tumor lineage (cholangiocarcinomas).[spa] En el trabajo actual hemos querido identificar genes regulados por TGF-β que estando implicados en EMT e invasión celular puedan también participar en el control del crecimiento, apoptosis y/o diferenciación, centrándonos en Snail y SPARC. La inhibición de la expresión de Snail impide la EMT inducida por TGF-β en hepatocitos murinos y aumenta su respuesta apoptótica, indicando un papel importante de Snail confiriendo resistencia a la muerte inducida por TGF-β. El TGF-β también induce señales anti-apoptóticas, mediadas por la activación del EGFR. La cancelación de Snail impide la inducción mediada por TGF-β de los ligandos del EGFR e inhibe la fosforilación de Akt, ERKs y familia c-Src, hecho coincidente con la activación de eventos apoptóticos dependientes de la mitocondria y con una fosforilación temprana de Smad3 en las células tratadas con TGF-β. También demostramos el papel de Snail en la sensibilización de los hepatocitos a la muerte celular por anoikis. La disminución de los niveles de Snail1 en células de carcinoma hepatocelular humano (HCC), restaura la respuesta apoptótica al TGF-β. El TGF-β induce la expresión de SPARC en las células tumorales FaO de hepatoma de rata pero no en los hepatocitos neonatales murinos no transformados. La inhibición de la expresión de SPARC revela un papel de SPARC en la inducción de EMT y en la respuesta apoptótica mediada por TGF-β en células tumorales hepáticas. A continuación quisimos estudiar el potencial tumorogénico de las células FaO después de un tratamiento in vitro crónico con TGF-β durante 4 semanas (TβT-FaO). Inyectamos estas células en ratones inmunodeprimidos para provocar la formación de tumores tanto subcutáneos como ortotópicos (inyección intraesplénica). La inoculación intraesplénica de células FaO indujo un carcinoma hepatocelular multifocal altamente proliferativo en todos los ratones, mientras que la inoculación paralela de células TβT-FaO promovió la formación de lesiones unifocales, heterogéneas y con baja proliferación que mostraron un fuerte marcaje para Smad2 fosforilado. Un análisis detallado de los tumores mostró lesiones con características de ducto biliar y lesiones con un fenotipo desdiferenciado (hepatoblastos). El cultivo primario de las células provenientes de estos tumores indicó que sólo las células obtenidas de los tumores FaO sufren apoptosis en respuesta al TGF-β, mientras que los tumores derivados de los TβT-faO contienen células que son completamente resistentes. En resumen, el tratamiento crónico in vitro con TGF-β de las células FaO cambió su potencial tumorogénico. El crecimiento tumoral fue más lento pero las células son resistentes a la apoptosis. Además, el fenotipo de las lesiones refleja un fenotipo tipo célula progenitora que provoca la aparición de tumores menos diferenciados o la transdiferenciación a una línea tumoral hepática distinta

    NADPH oxidase NOX4 mediates stellate cell activation and hepatocyte cell death during liver fibrosis development.

    Get PDF
    A role for the NADPH oxidases NOX1 and NOX2 in liver fibrosis has been proposed, but the implication of NOX4 is poorly understood yet. The aim of this work was to study the functional role of NOX4 in different cell populations implicated in liver fibrosis: hepatic stellate cells (HSC), myofibroblats (MFBs) and hepatocytes. Two different mice models that develop spontaneous fibrosis (Mdr2−/−/p19ARF−/−, Stat3Δhc/Mdr2−/−) and a model of experimental induced fibrosis (CCl4) were used. In addition, gene expression in biopsies from chronic hepatitis C virus (HCV) patients or non-fibrotic liver samples was analyzed. Results have indicated that NOX4 expression was increased in the livers of all animal models, concomitantly with fibrosis development and TGF-β pathway activation. In vitro TGF-β-treated HSC increased NOX4 expression correlating with transdifferentiation to MFBs. Knockdown experiments revealed that NOX4 downstream TGF-β is necessary for HSC activation as well as for the maintenance of the MFB phenotype. NOX4 was not necessary for TGF-β-induced epithelial-mesenchymal transition (EMT), but was required for TGF-β-induced apoptosis in hepatocytes. Finally, NOX4 expression was elevated in patients with hepatitis C virus (HCV)-derived fibrosis, increasing along the fibrosis degree. In summary, fibrosis progression both in vitro and in vivo (animal models and patients) is accompanied by increased NOX4 expression, which mediates acquisition and maintenance of the MFB phenotype, as well as TGF-β-induced death of hepatocytes

    NADPH oxidase NOX4 mediates stellate cell activation and hepatocyte cell death during liver fibrosis development.

    No full text
    A role for the NADPH oxidases NOX1 and NOX2 in liver fibrosis has been proposed, but the implication of NOX4 is poorly understood yet. The aim of this work was to study the functional role of NOX4 in different cell populations implicated in liver fibrosis: hepatic stellate cells (HSC), myofibroblats (MFBs) and hepatocytes. Two different mice models that develop spontaneous fibrosis (Mdr2−/−/p19ARF−/−, Stat3Δhc/Mdr2−/−) and a model of experimental induced fibrosis (CCl4) were used. In addition, gene expression in biopsies from chronic hepatitis C virus (HCV) patients or non-fibrotic liver samples was analyzed. Results have indicated that NOX4 expression was increased in the livers of all animal models, concomitantly with fibrosis development and TGF-β pathway activation. In vitro TGF-β-treated HSC increased NOX4 expression correlating with transdifferentiation to MFBs. Knockdown experiments revealed that NOX4 downstream TGF-β is necessary for HSC activation as well as for the maintenance of the MFB phenotype. NOX4 was not necessary for TGF-β-induced epithelial-mesenchymal transition (EMT), but was required for TGF-β-induced apoptosis in hepatocytes. Finally, NOX4 expression was elevated in patients with hepatitis C virus (HCV)-derived fibrosis, increasing along the fibrosis degree. In summary, fibrosis progression both in vitro and in vivo (animal models and patients) is accompanied by increased NOX4 expression, which mediates acquisition and maintenance of the MFB phenotype, as well as TGF-β-induced death of hepatocytes

    Caveolin-1 is required for TGF-β-induced transactivation of the EGF receptor pathway in hepatocytes through the activation of the metalloprotease TACE/ADAM17

    No full text
    Transforming growth factor-beta (TGF-β) plays a dual role in hepatocytes, inducing both pro- and anti-apoptotic responses, whose balance decides cell fate. Survival signals are mediated by the epidermal growth factor receptor (EGFR) pathway, which is activated by TGF-β in these cells. Caveolin-1 (Cav1) is a structural protein of caveolae linked to TGF-β receptors trafficking and signaling. Previous results have indicated that in hepatocytes, Cav1 is required for TGF-β-induced anti-apoptotic signals, but the molecular mechanism is not fully understood yet. In this work, we show that immortalized Cav1−/− hepatocytes were more sensitive to the pro-apoptotic effects induced by TGF-β, showing a higher activation of caspase-3, higher decrease in cell viability and prolonged increase through time of intracellular reactive oxygen species (ROS). These results were coincident with attenuation of TGF-β-induced survival signals in Cav1−/− hepatocytes, such as AKT and ERK1/2 phosphorylation and NFκ-B activation. Transactivation of the EGFR pathway by TGF-β was impaired in Cav1−/− hepatocytes, which correlated with lack of activation of TACE/ADAM17, the metalloprotease responsible for the shedding of EGFR ligands. Reconstitution of Cav1 in Cav1−/− hepatocytes rescued wild-type phenotype features, both in terms of EGFR transactivation and TACE/ADAM17 activation. TACE/ADAM17 was localized in detergent-resistant membrane (DRM) fractions in Cav1+/+ cells, which was not the case in Cav1−/− cells. Disorganization of lipid rafts after treatment with cholesterol-binding agents caused loss of TACE/ADAM17 activation after TGF-β treatment. In conclusion, in hepatocytes, Cav1 is required for TGF-β-mediated activation of the metalloprotease TACE/ADAM17 that is responsible for shedding of EGFR ligands and activation of the EGFR pathway, which counteracts the TGF-β pro-apoptotic effects. Therefore, Cav1 contributes to the pro-tumorigenic effects of TGF-β in liver cancer cells
    corecore