5 research outputs found

    Prospective comparison of speckle tracking longitudinal bidimensional strain between two vendors

    Get PDF
    SummaryBackgroundSpeckle tracking is a relatively new, largely angle-independent technique used for the evaluation of myocardial longitudinal strain (LS). However, significant differences have been reported between LS values obtained by speckle tracking with the first generation of software products.AimsTo compare LS values obtained with the most recently released equipment from two manufacturers.MethodsSystematic scanning with head-to-head acquisition with no modification of the patient's position was performed in 64 patients with equipment from two different manufacturers, with subsequent off-line post-processing for speckle tracking LS assessment (Philips QLAB 9.0 and General Electric [GE] EchoPAC BT12). The interobserver variability of each software product was tested on a randomly selected set of 20 echocardiograms from the study population.ResultsGE and Philips interobserver coefficients of variation (CVs) for global LS (GLS) were 6.63% and 5.87%, respectively, indicating good reproducibility. Reproducibility was very variable for regional and segmental LS values, with CVs ranging from 7.58% to 49.21% with both software products. The concordance correlation coefficient (CCC) between GLS values was high at 0.95, indicating substantial agreement between the two methods. While good agreement was observed between midwall and apical regional strains with the two software products, basal regional strains were poorly correlated. The agreement between the two software products at a segmental level was very variable; the highest correlation was obtained for the apical cap (CCC 0.90) and the poorest for basal segments (CCC range 0.31–0.56).ConclusionsA high level of agreement and reproducibility for global but not for basal regional or segmental LS was found with two vendor-dependent software products. This finding may help to reinforce clinical acceptance of GLS in everyday clinical practice

    Relationship Between the Ratio of Acceleration Time/Ejection Time and Mortality in Patients With High-Gradient Severe Aortic Stenosis

    No full text
    International audienceBackground The ratio of acceleration time/ejection time (AT/ET) is a simple and reproducible echocardiographic parameter that integrates aortic stenosis severity and its consequences on the left ventricle. No study has specifically assessed the prognostic impact of AT/ET on outcome in patients with high-gradient severe aortic stenosis (SAS) and no or mild symptoms. We sought to evaluate the relationship between AT/ET and mortality and determine the best predictive AT/ET cutoff value in these patients. Methods and Results A total of 353 patients (median age, 79 years; 46% women) with high-gradient (mean pressure gradient >= 40 mm Hg and/or aortic peak jet velocity >= 4 m/s) SAS, left ventricular ejection fraction >= 50%, and no or mild symptoms were studied. The impact of AT/ET 0.35 on all-cause mortality was retrospectively studied. During a median follow-up of 39 (25th-75th percentile, 23-62) months, 70 patients died. AT/ET >0.35 was associated with a considerable increased mortality risk after adjustment for established prognostic factors in SAS under medical and/or surgical management (adjusted hazard ratio [HR], 2.54; 95% CI, 1.47-4.37; P0.35 improved the predictive performance of models including established risk factors in SAS with better global model fit, reclassification, and discrimination. After propensity matching, increased mortality risk persisted when AT/ET >0.35 (adjusted HR, 2.10; 95% CI, 1.12-3.90; P0.35 is a strong predictor of outcome in patients with SAS and no or only mild symptoms and identifies a subgroup of patients at higher risk of death who may derive benefit from earlier aortic valve replacement

    Assessment of left ventricular size and function by 3-dimensional transthoracic echocardiography: Impact of the echocardiography platform and analysis software

    No full text
    International audienceBackground: Whether echocardiography platform and analysis software impact left ventricular (LV) volumes, ejection fraction (EF), and stroke volume (SV) by transthoracic tridimensional echocardiography (3DE) has not yet been assessed. Hence, our aim was to compare 3DE LV end-diastolic and end-systolic volumes (EDV and ESV), LVEF, and SV obtained with echocardiography platform from 2 different manufacturers. Methods: 3DE was performed in 84 patients (65% of screened consecutive patients), with equipment from 2 different manufacturers, with subsequent off-line postprocessing to obtain parameters of LV function and size (Philips QLAB 3DQ and General Electric EchoPAC 4D autoLVQ). Twenty-five patients with clinical indication for cardiac magnetic resonance imaging served as a validation subgroup. Results: LVEDV and LVESV from 2 vendors were highly correlated (r=0.93), but compared with 4D autoLVQ, the use of Qlab 3DQ resulted in lower LVEDV and LVESV (bias: 11 mL, limits of agreement: -25 to + 47 and bias: 6 mL, limits of agreement: -22 to + 34, respectively). The agreement between LVEF values of each software was poor (intraclass correlation coefficient 0.62) despite no or minimal bias. SVs were also lower with Qlab 3DQ advanced compared with 4D autoLVQ, and both were poorly correlated (r=0.66). Consistently, the underestimation of LVEDV, LVESV, and SV by 3DE compared with cardiac magnetic resonance imaging was more pronounced with Philips QLAB 3DQ advanced than with 4D autoLVQ. Conclusions: The echocardiography platform and analysis software significantly affect the values of LV parameters obtained by 3DE. Intervendor standardization and improvements in 3DE modalities are needed to broaden the use of LV parameters obtained by 3DE in clinical practice. (C) 2018 Elsevier Inc. All rights reserved

    Clinical Significance of Global Wasted Work in Patients with Heart Failure Receiving Cardiac Resynchronization Therapy

    No full text
    International audienceBackground: The relationship between myocardial work assessment using pressure-strain loops by echocardiography before cardiac resynchronization therapy (CRT) and response to CRT has been recently revealed. Among myocardial work parameters, the impact of left ventricular myocardial global wasted work (GWW) on response to CRT and outcome following CRT has been seldom studied. Hence, the authors evaluated the relationship between preprocedural GWW and outcome in a large prospective cohort of patients with heart failure (HF) and reduced ejection fraction receiving CRT. Methods: The study included 249 patients with HF. Myocardial work indices including GWW were calculated using speckle-tracking strain two-dimensional echocardiography using pressure-strain loops. End points of the study were (1) response to CRT, defined as left ventricular reverse remodeling and/or absence of hospitalization for HF, and (2) all-cause death during follow-up. Results: Median follow-up duration was 48 months (interquartile range, 43-54 months). Median preoperative GWW was 281 mm Hg% (interquartile range, 184-388 mm Hg%). Preoperative GWW was associated with CRT response (area under the curve, 0.74; P = 200 mm Hg% (adjusted hazard ratio, 2.0; 95% CI, 1.1-3.9; P = .0245). Adding GWW to a baseline model including known predictors of outcome in CRT resulted in an improvement of this model (chi(2) to improve 4.85, P = .028). The relationship between GWW and CRT response and outcome was stronger in terms of size effect and statistical significance than for other myocardial work indices. Conclusions: Low preoperative GWW (<200 mm Hg%) is associated with absence of CRT response in CRT candidates and with a relative increased risk for all-cause death. GWW appears to be a promising parameter to improve selection for CRT of patients with HF with reduced ejection fraction
    corecore