12 research outputs found

    Identifikation und Charakterisierung der nukleären Funktion und DNA-Interaktion von RGS2 in myeloischen Zellen

    Full text link
    RGS2 gehört zur Familie der „Regulator of G-Protein Signaling“ Proteine. Diese vermitteln eine Verstärkung der intrinsischen GTPase-Aktivität von Galpha-Untereinheiten. RGS2 gilt als basic Helix-Loop-Helix-Protein und könnte transkriptionsregulierende Eigenschaften besitzen. RGS2 zeigt eine vornehmlich nukleäre Lokalisation und besitzt die Fähigkeit zur Bindung an DNA. Mittels einer Bindungsstellen-Selektion konnten eine Sequenz aus dem Foxa2-Promotor sowie diverse E-Box-Motive als potentielle Bindestellen für RGS2 identifiziert werden. Die Bindungen wurden über weitere DNA-Protein-Bindungsassays bestätigt. Zudem wurde in Luziferase-Assays eine Aktivierung des C/EBPalpha-Promotors durch RGS2 gezeigt. Analysen mit verschiedenen RGS2-Deletionskonstrukten zeigten eine essentielle Rolle des N-Terminus für nukleäre Lokalisation, DNA-Bindung und Interaktionen mit C/EBPa sowie dessen Promotor. In der vorliegenden Arbeit konnten bislang unbekannte nukleäre Funktionen von RGS2 gezeigt werden

    Study of congenital Morgagnian cataracts in Holstein calves

    Get PDF
    Cataracts are focal to diffuse opacities of the eye lens causing impaired vision or complete blindness. For bilateral congenital cataracts in Red Holsteins a perfectly cosegregating mutation within the CPAMD8 gene (CPAMD8:g.5995966C>T) has been reported. We genotyped the CPAMD8:g.5995966C>T variant in Holstein calves affected by congenital bilateral congenital cataracts, their unaffected relatives and randomly selected herd mates. Ophthalmological examinations were performed in all affected individuals to confirm a congenital cataract. Whole genome sequencing was employed to screen variants in candidate genes for the Morgagnian cataract phenotype. In the present study, 3/35 cases were confirmed as homozygous mutated and 6/14 obligate carriers. Further 7/46 unaffected animals related with these cases were heterozygous mutated for the CPAMD8:g.5995966C>T variant. However 32 cases with a congenital cataract showed the wild type for the CPAMD8 variant. We did not identify variants in the candidate genes CPAMD8 and NID1 or in their close neighborhood as strongly associated with the congenital cataract phenotype in Holstein calves with the CPAMD8 wild type. In conclusion, the CPAMD8:g.5995966C>T variant is insufficient to explain the majority of Morgagnian congenital cataract phenotypes in Holsteins. It is very likely that congenital bilateral cataracts may be genetically heterogeneous and not yet known variants in genes other than CPAMD8 and NID1 are involved

    Clinical, cytogenetic and molecular genetic characterization of a tandem fusion translocation in a male Holstein cattle with congenital hypospadias and a ventricular septal defect.

    No full text
    Hypospadias, disorder of sex development (DSD), is a sporadic congenital abnormality of the genital region in male ruminants, which is characterized by a non-fused urethra during fetal development. Detailed clinical examination classified the hypospadias phenotype of a male Holstein calf studied here as the perineal type. In combined use of cytogenetic analysis and whole genome sequencing, a non-mosaic, pseudo-monosomy 59, XY + tan(18;27) was detected. This chromosomal aberration had its origin in a tandem fusion translocation of the bovine autosomes (BTA) 18 and 27 with an accompanying loss of genomic sequences mainly in the distal end of BTA 18 and the proximal end of BTA 27. The resulting phenotype included hypospadias, growth retardation and ventricular septal defect

    Cytokine-regulated GADD45G induces differentiation and lineage selection in hematopoietic stem cells

    Get PDF
    The balance of self-renewal and differentiation in long-term repopulating hematopoietic stem cells (LT-HSC) must be strictly controlled to maintain blood homeostasis and to prevent leukemogenesis. Hematopoietic cytokines can induce differentiation in LT-HSCs; however, the molecular mechanism orchestrating this delicate balance requires further elucidation. We identified the tumor suppressor GADD45G as an instructor of LT-HSC differentiation under the control of differentiation-promoting cytokine receptor signaling. GADD45G immediately induces and accelerates differentiation in LT-HSCs and overrides the self-renewal program by specifically activating MAP3K4-mediated MAPK p38. Conversely, the absence of GADD45G enhances the self-renewal potential of LT-HSCs. Videomicroscopy-based tracking of single LT-HSCs revealed that, once GADD45G is expressed, the development of LT-HSCs into lineage-committed progeny occurred within 36 hr and uncovered a selective lineage choice with a severe reduction in megakaryocytic-erythroid cells. Here, we report an unrecognized role of GADD45G as a central molecular linker of extrinsic cytokine differentiation and lineage choice control in hematopoiesis

    STAT5-regulated microRNA-193b controls haematopoietic stem and progenitor cell expansion by modulating cytokine receptor signalling

    No full text
    Haematopoietic stem cells (HSCs) require the right composition of microRNAs (miR) for proper life-long balanced blood regeneration. Here we show a regulatory circuit that prevents excessive HSC self-renewal by upregulation of miR-193b upon self-renewal promoting thrombopoietin (TPO)-MPL-STAT5 signalling. In turn, miR-193b restricts cytokine signalling, by targeting the receptor tyrosine kinase c-KIT. We generated a miR-193b knockout mouse model to unravel the physiological function of miR-193b in haematopoiesis. MiR-193b−/− mice show a selective gradual enrichment of functional HSCs, which are fully competent in multilineage blood reconstitution upon transplantation. The absence of miR-193b causes an accelerated expansion of HSCs, without altering cell cycle or survival, but by decelerating differentiation. Conversely, ectopic miR-193b expression restricts long-term repopulating HSC expansion and blood reconstitution. MiR-193b-deficient haematopoietic stem and progenitor cells exhibit increased basal and cytokine-induced STAT5 and AKT signalling. This STAT5-induced microRNA provides a negative feedback for excessive signalling to restrict uncontrolled HSC expansion.ISSN:2041-172

    STAT5-regulated microRNA-193b controls haematopoietic stem and progenitor cell expansion by modulating cytokine receptor signalling

    No full text
    Haematopoietic stem cells (HSCs) require the right composition of microRNAs (miR) for proper life-long balanced blood regeneration. Here we show a regulatory circuit that prevents excessive HSC self-renewal by upregulation of miR-193b upon self-renewal promoting thrombopoietin (TPO)-MPL-STAT5 signalling. In turn, miR-193b restricts cytokine signalling, by targeting the receptor tyrosine kinase c-KIT. We generated a miR-193b knockout mouse model to unravel the physiological function of miR-193b in haematopoiesis. MiR-193b−/− mice show a selective gradual enrichment of functional HSCs, which are fully competent in multilineage blood reconstitution upon transplantation. The absence of miR-193b causes an accelerated expansion of HSCs, without altering cell cycle or survival, but by decelerating differentiation. Conversely, ectopic miR-193b expression restricts long-term repopulating HSC expansion and blood reconstitution. MiR-193b-deficient haematopoietic stem and progenitor cells exhibit increased basal and cytokine-induced STAT5 and AKT signalling. This STAT5-induced microRNA provides a negative feedback for excessive signalling to restrict uncontrolled HSC expansion

    Game on! Enhancing engagement, interaction and reflection in library workshops

    Get PDF
    The production of nitric oxide (NO) is required for early stage embryo implantation into the uterus. Here the authors show that during differentiation of naive mouse ESCs, early production of endogenous NO leads to a mesendoderm differentiation commitment pathway by inhibiting the action of the transcriptional repressor Zeb1
    corecore