17,742 research outputs found
Current dependence of grain boundary magnetoresistance in La_0.67Ca_0.33MnO_3 films
We prepared epitaxial ferromagnetic manganite films on bicrystal substrates
by pulsed laser ablation. Their low- and high-field magnetoresistance (MR) was
measured as a function of magnetic field, temperature and current. At low
temperatures hysteretic changes in resistivity up to 70% due to switching of
magnetic domains at the coercitive field are observed. The strongly non-ohmic
behavior of the current-voltage leads to a complete suppression of the MR
effect at high bias currents with the identical current dependence at low and
high magnetic fields. We discuss the data in view of tunneling and mesoscale
magnetic transport models and propose an explicit dependence of the spin
polarization on the applied current in the grain boundary region.Comment: 5 pages, to appear in J. Appl. Phy
Short-Range Ordered Phase of the Double-Exchange Model in Infinite Dimensions
Using dynamical mean-field theory, we have evaluated the magnetic
instabilities and T=0 phase diagram of the double-exchange model on a Bethe
lattice in infinite dimensions. In addition to ferromagnetic (FM) and
antiferromagnetic (AF) phases, we also study a class of disordered phases with
magnetic short-range order (SRO). In the weak-coupling limit, a SRO phase has a
higher transition temperature than the AF phase for all fillings p below 1 and
can even have a higher transition temperature than the FM phase. At T=0 and for
small Hund's coupling J_H, a SRO state has lower energy than either the FM or
AF phases for 0.26\le p 0 limit
but appears for any non-zero value of J_H.Comment: 11 pages, 3 figures, published versio
Experimental verification of entanglement generated in a plasmonic system
A core process in many quantum tasks is the generation of entanglement. It is
being actively studied in a variety of physical settings - from simple
bipartite systems to complex multipartite systems. In this work we
experimentally study the generation of bipartite entanglement in a nanophotonic
system. Entanglement is generated via the quantum interference of two surface
plasmon polaritons in a beamsplitter structure, i.e. utilising the
Hong-Ou-Mandel (HOM) effect, and its presence is verified using quantum state
tomography. The amount of entanglement is quantified by the concurrence and we
find values of up to 0.77 +/- 0.04. Verifying entanglement in the output state
from HOM interference is a nontrivial task and cannot be inferred from the
visibility alone. The techniques we use to verify entanglement could be applied
to other types of photonic system and therefore may be useful for the
characterisation of a range of different nanophotonic quantum devices.Comment: 7 pages, 4 figure
Superconductivity in striped and multi-Fermi-surface Hubbard models: From the cuprates to the pnictides
Single- and multi-band Hubbard models have been found to describe many of the
complex phenomena that are observed in the cuprate and iron-based
high-temperature superconductors. Simulations of these models therefore provide
an ideal framework to study and understand the superconducting properties of
these systems and the mechanisms responsible for them. Here we review recent
dynamic cluster quantum Monte Carlo simulations of these models, which provide
an unbiased view of the leading correlations in the system. In particular, we
discuss what these simulations tell us about superconductivity in the
homogeneous 2D single-orbital Hubbard model, and how charge stripes affect this
behavior. We then describe recent simulations of a bilayer Hubbard model, which
provides a simple model to study the type and nature of pairing in systems with
multiple Fermi surfaces such as the iron-based superconductors.Comment: Published as part of Superstripes 2011 (Rome) conference proceeding
Biaxial order parameter in the homologous series of orthogonal bent-core smectic liquid crystals
The fundamental parameter of the uniaxial liquid crystalline state that governs nearly all of its physical properties is the primary orientational order parameter (S) for the long axes of molecules with respect to the director. The biaxial liquid crystals (LCs) possess biaxial order parameters depending on the phase symmetry of the system. In this paper we show that in the first approximation a biaxial orthogonal smectic phase can be described by two primary order parameters: S for the long axes and C for the ordering of the short axes of molecules. The temperature dependencies of S and C are obtained by the Haller's extrapolation technique through measurements of the optical birefringence and biaxiality on a nontilted polar antiferroelectric (Sm-APA) phase of a homologous series of LCs built from the bent-core achiral molecules. For such a biaxial smectic phase both S and C, particularly the temperature dependency of the latter, are being experimentally determined. Results show that S in the orthogonal smectic phase composed of bent cores is higher than in Sm-A calamatic LCs and C is also significantly large
Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons
Resonance diffraction in the periodic array of graphene micro-ribbons is
theoretically studied following a recent experiment [L. Ju et al, Nature
Nanotech. 6, 630 (2011)]. Systematic studies over a wide range of parameters
are presented. It is shown that a much richer resonant picture would be
observable for higher relaxation times of charge carriers: more resonances
appear and transmission can be totally suppressed. The comparison with the
absorption cross-section of a single ribbon shows that the resonant features of
the periodic array are associated with leaky plasmonic modes. The
longest-wavelength resonance provides the highest visibility of the
transmission dip and has the strongest spectral shift and broadening with
respect to the single-ribbon resonance, due to collective effects.Comment: 5 pages, 3 figure
Observation of quantum interference in the plasmonic Hong-Ou-Mandel effect
We report direct evidence of the bosonic nature of surface plasmon polaritons
(SPPs) in a scattering-based beamsplitter. A parametric down-conversion source
is used to produce two indistinguishable photons, each of which is converted
into a SPP on a metal-stripe waveguide and then made to interact through a
semi-transparent Bragg mirror. In this plasmonic analog of the Hong-Ou-Mandel
experiment, we measure a coincidence dip with a visibility of 72%, a key
signature that SPPs are bosons and that quantum interference is clearly
involved.Comment: 5 pages, 3 figure
From Helplessness To Hope: The Seminal Career Of Martin Seligman
Provides a background to the history of research on learned helplessness and learned optimism, as well as M. Seligman\u27s own involvement in these areas. The development of research in this area also illustrates two other important lessons in how science actually proceeds. First, it is often difficult to predict at the outset where research will lead. Work on learned helplessness began in the animal laboratory and for several years was directed at deep theoretical issues in the psychology of learning and not at depression, academic achievement, and other significant human phenomenon. And second, the history of learned helplessness research demonstrates the continuity between basic and applied research in the way that it has moved effortlessly between fundamental issues in learning, cognition, and motivation on the one hand, and attempts to deal with problems of human adaptation and obstacles to achievement of human potential on the other
Spin fluctuations and superconductivity in a 3D tight-binding model for BaFe2As2
Despite the wealth of experimental data on the Fe-pnictide compounds of the
KFe2As2-type, K = Ba, Ca, or Sr, the main theoretical work based on
multiorbital tight-binding models has been restricted so far to the study of
the related 1111 compounds. This can be ascribed to the more three dimensional
electronic structure found by ab initio calculations for the 122 materials,
making this system less amenable to model development. In addition, the more
complicated Brillouin zone (BZ) of the body-centered tetragonal symmetry does
not allow a straightforward unfolding of the electronic band structure into an
effective 1Fe/unit cell BZ. Here we present an effective 5-orbital
tight-binding fit of the full DFT band structure for BaFeAs including the kz
dispersions. We compare the 5-orbital spin fluctuation model to one previously
studied for LaOFeAs and calculate the RPA enhanced susceptibility. Using the
fluctuation exchange approximation to determine the leading pairing
instability, we then examine the differences between a strictly two dimensional
model calculation over a single kz cut of the BZ and a completely three
dimensional approach. We find pairing states quite similar to the 1111
materials, with generic quasi-isotropic pairing on the hole sheets and nodal
states on the electron sheets at kz = 0 which however are gapped as the system
is hole doped. On the other hand, a substantial kz dependence of the order
parameter remains, with most of the pairing strength deriving from processes
near kz = pi. These states exhibit a tendency for an enhanced anisotropy on the
hole sheets and a reduced anisotropy on the electron sheets near the top of the
BZ.Comment: 12 pages, 15 figure
- …