16,340 research outputs found

    Current dependence of grain boundary magnetoresistance in La_0.67Ca_0.33MnO_3 films

    Full text link
    We prepared epitaxial ferromagnetic manganite films on bicrystal substrates by pulsed laser ablation. Their low- and high-field magnetoresistance (MR) was measured as a function of magnetic field, temperature and current. At low temperatures hysteretic changes in resistivity up to 70% due to switching of magnetic domains at the coercitive field are observed. The strongly non-ohmic behavior of the current-voltage leads to a complete suppression of the MR effect at high bias currents with the identical current dependence at low and high magnetic fields. We discuss the data in view of tunneling and mesoscale magnetic transport models and propose an explicit dependence of the spin polarization on the applied current in the grain boundary region.Comment: 5 pages, to appear in J. Appl. Phy

    Short-Range Ordered Phase of the Double-Exchange Model in Infinite Dimensions

    Get PDF
    Using dynamical mean-field theory, we have evaluated the magnetic instabilities and T=0 phase diagram of the double-exchange model on a Bethe lattice in infinite dimensions. In addition to ferromagnetic (FM) and antiferromagnetic (AF) phases, we also study a class of disordered phases with magnetic short-range order (SRO). In the weak-coupling limit, a SRO phase has a higher transition temperature than the AF phase for all fillings p below 1 and can even have a higher transition temperature than the FM phase. At T=0 and for small Hund's coupling J_H, a SRO state has lower energy than either the FM or AF phases for 0.26\le p 0 limit but appears for any non-zero value of J_H.Comment: 11 pages, 3 figures, published versio

    Biaxial order parameter in the homologous series of orthogonal bent-core smectic liquid crystals

    Get PDF
    The fundamental parameter of the uniaxial liquid crystalline state that governs nearly all of its physical properties is the primary orientational order parameter (S) for the long axes of molecules with respect to the director. The biaxial liquid crystals (LCs) possess biaxial order parameters depending on the phase symmetry of the system. In this paper we show that in the first approximation a biaxial orthogonal smectic phase can be described by two primary order parameters: S for the long axes and C for the ordering of the short axes of molecules. The temperature dependencies of S and C are obtained by the Haller's extrapolation technique through measurements of the optical birefringence and biaxiality on a nontilted polar antiferroelectric (Sm-APA) phase of a homologous series of LCs built from the bent-core achiral molecules. For such a biaxial smectic phase both S and C, particularly the temperature dependency of the latter, are being experimentally determined. Results show that S in the orthogonal smectic phase composed of bent cores is higher than in Sm-A calamatic LCs and C is also significantly large

    Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons

    Get PDF
    Resonance diffraction in the periodic array of graphene micro-ribbons is theoretically studied following a recent experiment [L. Ju et al, Nature Nanotech. 6, 630 (2011)]. Systematic studies over a wide range of parameters are presented. It is shown that a much richer resonant picture would be observable for higher relaxation times of charge carriers: more resonances appear and transmission can be totally suppressed. The comparison with the absorption cross-section of a single ribbon shows that the resonant features of the periodic array are associated with leaky plasmonic modes. The longest-wavelength resonance provides the highest visibility of the transmission dip and has the strongest spectral shift and broadening with respect to the single-ribbon resonance, due to collective effects.Comment: 5 pages, 3 figure

    Experimental verification of entanglement generated in a plasmonic system

    Full text link
    A core process in many quantum tasks is the generation of entanglement. It is being actively studied in a variety of physical settings - from simple bipartite systems to complex multipartite systems. In this work we experimentally study the generation of bipartite entanglement in a nanophotonic system. Entanglement is generated via the quantum interference of two surface plasmon polaritons in a beamsplitter structure, i.e. utilising the Hong-Ou-Mandel (HOM) effect, and its presence is verified using quantum state tomography. The amount of entanglement is quantified by the concurrence and we find values of up to 0.77 +/- 0.04. Verifying entanglement in the output state from HOM interference is a nontrivial task and cannot be inferred from the visibility alone. The techniques we use to verify entanglement could be applied to other types of photonic system and therefore may be useful for the characterisation of a range of different nanophotonic quantum devices.Comment: 7 pages, 4 figure
    corecore