74 research outputs found

    Eye Repair in Xenopus Laevis

    Full text link
    Eye development in vertebrates of complex steps that include specific interactions of the neuroectoderm and overlying head ectoderm. The African clawed frog, Xenopus laevis (X. laevis), has a well-characterize eye developmental pathway and is an established model for eye regeneration research. Additionally, Xenopus frogs have high regenerative abilities to regenerate individual eye tissues such as the retina, lens, and cornea. However, it was previously shown that the removal of the specified eye field during the neurulation stage or an eye during the swimming tadpole stage does not permit an eye to regenerate. Here we will describe a model for investigating eye regeneration. We discovered that eye regrowth occurs in tailbud embryos after the surgical removal of the specified optic vesicle tissues. Regrown eyes are found to show similar morphology and reach similar size to a contralateral, internal control eye by 5 days of recovery. Additionally, the regrown eye has expected eye structures, including all cell types of the retina and the lens. Furthermore, we found that eye regrowth requires an early bioelectrical signaling mechanism as seen in appendage regeneration. Overall, our results indicate that Xenopus tailbud embryos can regenerate an eye after tissue lost through a process that requires a known mechanism driving regeneration

    Longitudinal cephalometric study of untreated subjects with different facial types

    Get PDF
    To examine the craniofacial morphological characteristics of different facial types based on vertical dysplasia in untreated subjects from the ages of 8 to 18

    Mitochondrial respiration - an important therapeutic target in melanoma

    Get PDF
    The importance of mitochondria as oxygen sensors as well as producers of ATP and reactive oxygen species (ROS) has recently become a focal point of cancer research. However, in the case of melanoma, little information is available to what extent cellular bioenergetics processes contribute to the progression of the disease and related to it, whether oxidative phosphorylation (OXPHOS) has a prominent role in advanced melanoma. In this study we demonstrate that compared to melanocytes, metastatic melanoma cells have elevated levels of OXPHOS. Furthermore, treating metastatic melanoma cells with the drug, Elesclomol, which induces cancer cell apoptosis through oxidative stress, we document by way of stable isotope labeling with amino acids in cell culture (SILAC) that proteins participating in OXPHOS are downregulated. We also provide evidence that melanoma cells with high levels of glycolysis are more resistant to Elesclomol. We further show that Elesclomol upregulates hypoxia inducible factor 1-α (HIF-1α), and that prolonged exposure of melanoma cells to this drug leads to selection of melanoma cells with high levels of glycolysis. Taken together, our findings suggest that molecular targeting of OXPHOS may have efficacy for advanced melanoma. © 2012 Barbi de Moura et al

    The BRICS (Bronchiectasis Radiologically Indexed CT Score)- a multi-center study score for use in idiopathic and post infective bronchiectasis

    Get PDF
    OBJECTIVES: The goal of this study was to develop a simplified radiological score that could assess clinical disease severity in bronchiectasis. METHODS: The Bronchiectasis Radiologically Indexed CT Score (BRICS) was devised based on a multivariable analysis of the Bhalla score and its ability in predicting clinical parameters of severity. The score was then externally validated in six centers in 302 patients. RESULTS: A total of 184 high-resolution CT scans were scored for the validation cohort. In a multiple logistic regression model, disease severity markers significantly associated with the Bhalla score were percent predicted FEV1, sputum purulence, and exacerbations requiring hospital admission. Components of the Bhalla score that were significantly associated with the disease severity markers were bronchial dilatation and number of bronchopulmonary segments with emphysema. The BRICS was developed with these two parameters. The receiver operating-characteristic curve values for BRICS in the derivation cohort were 0.79 for percent predicted FEV1, 0.71 for sputum purulence, and 0.75 for hospital admissions per year; these values were 0.81, 0.70, and 0.70, respectively, in the validation cohort. Sputum free neutrophil elastase activity was significantly elevated in the group with emphysema on CT imaging. CONCLUSIONS: A simplified CT scoring system can be used as an adjunct to clinical parameters to predict disease severity in patients with idiopathic and postinfective bronchiectasis

    Comparison of DNA extraction kits for PCR-DGGE analysis of human intestinal microbial communities from fecal specimens

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The influence of diet on intestinal microflora has been investigated mainly using conventional microbiological approaches. Although these studies have advanced knowledge on human intestinal microflora, it is imperative that new methods are applied to facilitate scientific progress. Culture-independent molecular fingerprinting method of Polymerase Chain Reaction and Denaturing Gradient Gel Electrophoresis (PCR-DGGE) has been used to study microbial communities in a variety of environmental samples. However, these protocols must be optimized prior to their application in order to enhance the quality and accuracy of downstream analyses. In this study, the relative efficacy of four commercial DNA extraction kits (Mobio Ultra Clean<sup>Âź </sup>Fecal DNA Isolation Kit, M; QIAamp<sup>Âź </sup>DNA Stool Mini Kit, Q; FastDNA<sup>Âź </sup>SPIN Kit, FSp; FastDNA<sup>Âź </sup>SPIN Kit for Soil, FSo) were evaluated. Further, PCR-DGGE technique was also assessed for its feasibility in detecting differences in human intestinal bacterial fingerprint profiles.</p> <p>Method</p> <p>Total DNA was extracted from varying weights of human fecal specimens using four different kits, followed by PCR amplification of bacterial 16S rRNA genes, and DGGE separation of the amplicons.</p> <p>Results</p> <p>Regardless of kit, maximum DNA yield was obtained using 10 to 50 mg (wet wt) of fecal specimens and similar DGGE profiles were obtained. However, kits FSp and FSo extracted significantly larger amounts of DNA per g dry fecal specimens and produced more bands on their DGGE profiles than kits M and Q due to their use of bead-containing lysing matrix and vigorous shaking step. DGGE of 16S rRNA gene PCR products was suitable for capturing the profiles of human intestinal microbial community and enabled rapid comparative assessment of inter- and intra-subject differences.</p> <p>Conclusion</p> <p>We conclude that extraction kits that incorporated bead-containing lysing matrix and vigorous shaking produced high quality DNA from human fecal specimens (10 to 50 mg, wet wt) that can be resolved as bacterial community fingerprints using PCR-DGGE technique. Subsequently, PCR-DGGE technique can be applied for studying variations in human intestinal microbial communities.</p

    Strand-Specific RNA-Seq Analyses of Fruiting Body Development in Coprinopsis cinerea

    Get PDF
    The basidiomycete fungus Coprinopsis cinerea is an important model system for multicellular development. Fruiting bodies of C. cinerea are typical mushrooms, which can be produced synchronously on defined media in the laboratory. To investigate the transcriptome in detail during fruiting body development, high-throughput sequencing (RNA-seq) was performed using cDNA libraries strand-specifically constructed from 13 points (stages/tissues) with two biological replicates. The reads were aligned to 14,245 predicted transcripts, and counted for forward and reverse transcripts. Differentially expressed genes (DEGs) between two adjacent points and between vegetative mycelium and each point were detected by Tag Count Comparison (TCC). To validate RNA-seq data, expression levels of selected genes were compared using RPKM values in RNA-seq data and qRT-PCR data, and DEGs detected in microarray data were examined in MA plots of RNA-seq data by TCC. We discuss events deduced from GO analysis of DEGs. In addition, we uncovered both transcription factor candidates and antisense transcripts that are likely to be involved in developmental regulation for fruiting

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Impact of lifestyle changes on innate immune defense throughout the lifespan

    No full text
    Evidence exists that moderate exercise has beneficial effects on immune function throughout the lifespan. Moreover, Withania somnifera (WS), an herb in Ayurvedic medicine, has been investigated for anti-inflammatory properties and stimulatory effect on the immune system for disease resistance. Additionally, an unhealthy diet promotes systemic inflammation. We investigated the hypotheses that voluntary exercise, WS, and a whole-food diet enhances immune function and decreases systemic inflammation throughout the lifespan. The outcome measures were the inflammatory marker C-reactive protein (CRP) and lysozyme. We examined changes due to our interventions outlined above. Male Sprague-Dawley rats were divided into five treatment groups: each interventions, a combined treatment group (all interventions), and control (standard food and no exercise). Analysis of CRP expression was performed using an ELISA and analysis of lysozyme was performed through a lysoplate assay. Differences in expression levels of CRP and lysozyme, amongst different interventions, indicated a possible predictor for monitoring immunosenescence
    • 

    corecore